题目内容
已知an+1=
,a1=1,n∈N*,则an=
.
| an |
| an+1 |
| 1 |
| n |
| 1 |
| n |
分析:由已知变形可得
-
=1,由等差数列的定义可知{
}为等差数列,可得其通项公式,进而可得答案.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
解答:解:∵an+1=
,∴
=
=1+
,
故可得
-
=1,故数列{
}为等差数列,
且公差为d=1,首项为
=1,
故
=
+(n-1)d=n,故an=
故答案为:
| an |
| an+1 |
| 1 |
| an+1 |
| an+1 |
| an |
| 1 |
| an |
故可得
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
且公差为d=1,首项为
| 1 |
| a1 |
故
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| n |
故答案为:
| 1 |
| n |
点评:本题考查数列通项公式的求解,涉及等差数列的通项公式,属基础题.
练习册系列答案
相关题目