题目内容

2.把边长为2的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,则异面直线AD,BC所成的角为(  )
A.120°B.30°C.90°D.60°

分析 如图所示,建立空间直角坐标系.不妨设AB=$\sqrt{2}$,利用$cos<\overrightarrow{DA},\overrightarrow{CB}>$=$\frac{\overrightarrow{DA}•\overrightarrow{CB}}{|\overrightarrow{DA}||\overrightarrow{CB}|}$即可得出.

解答 解:如图所示,建立空间直角坐标系.
不妨设AB=$\sqrt{2}$,则A(0,0,1),D(-1,0,0),B(1,0,0),C(0,1,0),
则$\overrightarrow{DA}$=(1,0,1),$\overrightarrow{CB}$=(1,-1,0),
∴$cos<\overrightarrow{DA},\overrightarrow{CB}>$=$\frac{\overrightarrow{DA}•\overrightarrow{CB}}{|\overrightarrow{DA}||\overrightarrow{CB}|}$=$\frac{1}{\sqrt{2}×\sqrt{2}}$=$\frac{1}{2}$.
∴直线AD与直线BC所成的角为60°
故选:D.

点评 本题考查了向量夹角公式求异面直线所成的角、正方形的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网