题目内容
若非零向量
,
满足
,且
,则向量
,
的夹角为 ( )
| A. | B. | C. | D. |
A
解析试题分析:因为,非零向量
,
满足
,且
,所以,
=
,
=
,所以,向量
,
的夹角为
,选A。
考点:平面向量的数量积,平面向量的夹角。
点评:简单题,利用
求夹角。
练习册系列答案
相关题目
已知点
.
.
.
,则向量
在
方向上的投影为( )
| A. | B. | C. | D. |
= ( )
| A.2 | B.4 | C.1 | D.8 |
非零向量
,
,
,若向量
,则
的最大值为( )
| A. | B. | C. | D.以上均不对 |
已知平面上
三点共线,且
,则对于函数
,下列结论中错误的是( )
| A.周期是 | B.最大值是2 |
| C. | D.函数在区间 |
在R t △PAB中,PA=PB,点C、D分别在PA、PB上,且CD∥AB,AB=3,AC=
,则
的值为( )
| A.-7 | B.0 | C.-3 | D.3 |
在
中,
,
,点
在
上且满足
,则
等于( )
| A. | B. | C. | D. |