题目内容

8.已知a1,a2,a3,…an∈R+,a=$\sum_{i=1}^{n}$ai(n∈N,n≥2),求f(a1,a2,a3,…an)=$\sum_{i=1}^{n}$$\frac{{a}_{i}}{3a-{a}_{i}}$的最小值.

分析 由$\frac{{a}_{i}}{3a-{a}_{i}}$=$\frac{3a-(3a-{a}_{i})}{3a-{a}_{i}}$=$\frac{3a}{3a-{a}_{i}}$-1,可得f(a1,a2,a3,…an)=$\sum_{i=1}^{n}$$\frac{{a}_{i}}{3a-{a}_{i}}$=($\frac{3a}{3a-{a}_{1}}$+$\frac{3a}{3a-{a}_{2}}$+…+$\frac{3a}{3a-{a}_{n}}$-n),求出[(3a-a1)+(3a-a2)+…+(3a-an)]•($\frac{3a}{3a-{a}_{1}}$+$\frac{3a}{3a-{a}_{2}}$+…+$\frac{3a}{3a-{a}_{n}}$-n)≥an,
则f(a1,a2,a3,…an)=$\sum_{i=1}^{n}$$\frac{{a}_{i}}{3a-{a}_{i}}$=($\frac{3a}{3a-{a}_{1}}$+$\frac{3a}{3a-{a}_{2}}$+…+$\frac{3a}{3a-{a}_{n}}$-n)的值可求.

解答 解:∵$\frac{{a}_{i}}{3a-{a}_{i}}$=$\frac{3a-(3a-{a}_{i})}{3a-{a}_{i}}$=$\frac{3a}{3a-{a}_{i}}$-1,
∴f(a1,a2,a3,…an)=$\sum_{i=1}^{n}$$\frac{{a}_{i}}{3a-{a}_{i}}$=($\frac{3a}{3a-{a}_{1}}$+$\frac{3a}{3a-{a}_{2}}$+…+$\frac{3a}{3a-{a}_{n}}$-n)
∴[(3a-a1)+(3a-a2)+…+(3a-an)]•($\frac{3a}{3a-{a}_{1}}$+$\frac{3a}{3a-{a}_{2}}$+…+$\frac{3a}{3a-{a}_{n}}$-n)
=3a[(3a-a1)+(3a-a2)+…+(3a-an)]•($\frac{1}{3a-{a}_{1}}$+$\frac{1}{3a-{a}_{2}}$+…+$\frac{1}{3a-{a}_{n}}$)-[(3a-a1)+(3a-a2)+…+(3a-an)]×n  
=3a[(3a-a1)+(3a-a2)+…+(3a-an)]•($\frac{1}{3a-{a}_{1}}$+$\frac{1}{3a-{a}_{2}}$+…+$\frac{1}{3a-{a}_{n}}$)-a(3n-1)n
≥3a(n+2$\sqrt{\frac{3a-{a}_{1}}{3a-{a}_{2}}•\frac{3a-{a}_{2}}{3a-{a}_{1}}}$+2$\sqrt{\frac{3a-{a}_{1}}{3a-{a}_{3}}•\frac{3a-{a}_{3}}{3a-{a}_{1}}}$+…+2$\sqrt{\frac{3a-{a}_{n-1}}{3a-{a}_{n}}•\frac{3a-{a}_{n}}{3a-{a}_{n-1}}}$)-a(3n-1)n
=3a•[n+2($\frac{{n}^{2}-n}{2}$)]-3an2+an=an.
上式当且仅当a1=a2=a3=…=an时等号成立.
∴f(a1,a2,a3,…an)=$\sum_{i=1}^{n}$$\frac{{a}_{i}}{3a-{a}_{i}}$=$\frac{3a}{3a-{a}_{1}}$+$\frac{3a}{3a-{a}_{2}}$+…+$\frac{3a}{3a-{a}_{n}}$-n
≥$\frac{an}{(3a-{a}_{1})+(3a-{a}_{2})+…+(3a-{a}_{n})}$=$\frac{an}{3an-a}=\frac{n}{3n-1}$.

点评 本题是数列与函数的综合题,考查了利用基本不等式求函数的最值,关键是考查灵活变形能力,难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网