题目内容
已知非零向量
,
,
满足
+
+
=0,且
与
的夹角为60°,|
|=
|
|,则
与
的夹角为( )
| a |
| b |
| c |
| a |
| b |
| c |
| a |
| c |
| b |
| 3 |
| a |
| a |
| b |
| A、30° | B、150° |
| C、60° | D、120° |
分析:由于
+
+
=
,可得-
=
+
,由数量积的运算性质可得
2=
2+
2+2
•
,又
与
的夹角为60°,|
|=
|
|,
于是3|
|2=|
|2+|
|2+2|
| |
|cso60°,可得|
|=|
|.另一方面由-
=
+
,可得-
•
=
2+
•
,即可得出.
| a |
| b |
| c |
| 0 |
| b |
| a |
| c |
| b |
| a |
| c |
| a |
| c |
| a |
| c |
| b |
| 3 |
| a |
于是3|
| a |
| a |
| c |
| a |
| c |
| a |
| c |
| b |
| a |
| c |
| a |
| b |
| a |
| a |
| c |
解答:解:∵
+
+
=
,
∴-
=
+
,
∴
2=
2+
2+2
•
,
又
与
的夹角为60°,|
|=
|
|,
∴3|
|2=|
|2+|
|2+2|
| |
|cso60°,
化为2|
|2-|
| |
|-|
|2=0,即(2|
|+|
|)(|
|-|
|)=0,
解得|
|=|
|.
由-
=
+
,可得-
•
=
2+
•
,
∴-|
| |
|cos<
,
>=|
|2+|
| |
|cos60°,
∴-
|
|2cos<
,
>=|
|2+
|
|2,
∵|
|≠0,∴cos<
,
>=-
.
∴<
,
>=150°.
故选:B.
| a |
| b |
| c |
| 0 |
∴-
| b |
| a |
| c |
∴
| b |
| a |
| c |
| a |
| c |
又
| a |
| c |
| b |
| 3 |
| a |
∴3|
| a |
| a |
| c |
| a |
| c |
化为2|
| a |
| a |
| c |
| c |
| a |
| c |
| a |
| c |
解得|
| a |
| c |
由-
| b |
| a |
| c |
| a |
| b |
| a |
| a |
| c |
∴-|
| a |
| b |
| a |
| b |
| a |
| a |
| c |
∴-
| 3 |
| a |
| a |
| b |
| a |
| 1 |
| 2 |
| a |
∵|
| a |
| a |
| b |
| ||
| 2 |
∴<
| a |
| b |
故选:B.
点评:本题考查了向量的数量积运算及其性质、夹角公式,属于中档题.
练习册系列答案
相关题目