题目内容

已知椭圆的两焦点分别为F1、F2,点P是以F1F2为直径的圆与椭圆的交点,若∠PF1F2=5∠PF2F1,则椭圆离心率为( )
A.
B.
C.
D.
【答案】分析:根据题意可知∠F1PF2=90°,∠PF1F2=5∠PF2F1,进而求得∠PF1F2和∠PF2F1,在Rt△PF1F2分别表示出|PF1|和|PF2|,根据椭圆的定义可得2a=|PF1|+|PF2|,进而求得a和c的关系,从而求出椭圆的离心率.
解答:解:∵点P是以F1F2为直径的圆与椭圆的交点,
∴∠F1PF2=90°
∵∠PF1F2=5∠PF2F1
∴∠PF1F2=15°,∠PF2F1=75°
在直角三角形F1PF2中,|PF1|=|F1F2|sin∠PF2F1=2c•sin75°,|PF2|=|F1F2|sin∠PF1F2=2c•sin15°,
∵2a=|PF1|+|PF2|
∴2a=2c•sin75°+2c•sin15°=4csin45°cos30°=c

故选A.
点评:本题以椭圆为载体,考查椭圆的几何性质,求椭圆的离心率的关键是找出a和c的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网