题目内容

6.已知数列{an}的前n项和${S_n}={n^2}+kn$,其中k为常数,a6=13.
(1)求k的值及数列{an}的通项公式;
(2)若${b_n}=\frac{2}{{n({a_n}+1)}}$,求数列{bn}的前n项和Tn

分析 (1)${S_n}={n^2}+kn$,n≥2时,an=Sn-Sn-1.n=6时,a6=13,解得k.进而得出.
(2)${b_n}=\frac{2}{{n({a_n}+1)}}$=$\frac{2}{n(2n+2)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂项求和”方法即可得出.

解答 解:(1)∵${S_n}={n^2}+kn$,n≥2时,an=Sn-Sn-1=n2+kn-[(n-1)2+k(n-1)]=2n-1+k.
∴n=6时,a6=11+k=13,解得k=2.
∴n≥2时,an=2n-1+2=2n+1.
当n=1时,a1=S1=1+2=3,上式也成立.
∴an=2n+1.
(2)${b_n}=\frac{2}{{n({a_n}+1)}}$=$\frac{2}{n(2n+2)}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
数列{bn}的前n项和Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

点评 本题考查了递推关系、数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网