题目内容

8.某种产品的广告费用支出x(万元)与销售额y(万元)之间有如下的对应数据:
x24568
y3040605070
(1)求回归直线方程;
(2)据此估计广告费用为12万元时的销售额约为多少?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.

分析 (1)根据所给的数据先做出横标和纵标的平均数,利用最小二乘法写出线性回归方程系数的表达式,把样本中心点代入求出a的值,得到线性回归方程.
(2)根据所给的变量x的值,把值代入线性回归方程,得到对应的y的值,这里的y的值是一个预报值.

解答 解:(1)求回归直线方程$\overline{x}$=$\frac{2+4+5+6+8}{5}$=5$\overline{y}$=$\frac{30+40+60+50+70}{5}$=50
b=$\frac{1380-25×50}{145-5×25}$=6.5
a=50-6.5×5=17.5
∴因此回归直线方程为y=6.5x+17.5;
(2)当x=12时,预报y的值为y=12×6.5+17.5=95.5万元. 
即广告费用为12万元时,销售收入y的值大约是95.5万元.

点评 本题考查线性回归方程的求法和应用,本题解题的关键是求出线性回归方程的系数,这是后面解题的先决条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网