题目内容
8.某种产品的广告费用支出x(万元)与销售额y(万元)之间有如下的对应数据:| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
(2)据此估计广告费用为12万元时的销售额约为多少?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
分析 (1)根据所给的数据先做出横标和纵标的平均数,利用最小二乘法写出线性回归方程系数的表达式,把样本中心点代入求出a的值,得到线性回归方程.
(2)根据所给的变量x的值,把值代入线性回归方程,得到对应的y的值,这里的y的值是一个预报值.
解答 解:(1)求回归直线方程$\overline{x}$=$\frac{2+4+5+6+8}{5}$=5$\overline{y}$=$\frac{30+40+60+50+70}{5}$=50
b=$\frac{1380-25×50}{145-5×25}$=6.5
a=50-6.5×5=17.5
∴因此回归直线方程为y=6.5x+17.5;
(2)当x=12时,预报y的值为y=12×6.5+17.5=95.5万元.
即广告费用为12万元时,销售收入y的值大约是95.5万元.
点评 本题考查线性回归方程的求法和应用,本题解题的关键是求出线性回归方程的系数,这是后面解题的先决条件.
练习册系列答案
相关题目
18.2016年11月21日是附中建校76周年校庆日,为了了解在校同学们对附中的看法,学校进行了调查,从全校所有班级中任选三个班,统计同学们对附中的看法,情况如下表:
(1)从这三个班中各选一位同学,求恰好有2人认为附中“非常好”的概率(用比例作为相应概率);
(2)若在B班按所持态度分层抽样,抽取9人,再从这9人中任意选取3人,记认为附中“非常好”的人数为ξ,求ξ的分布列和数学期望.
| 对附中的看法 | 非常好,附中推行素质教育,身心得以全面发展 | 很好,我的高中生活很快乐很充实 |
| A班人数比例 | $\frac{3}{4}$ | $\frac{1}{4}$ |
| B班人数比例 | $\frac{2}{3}$ | $\frac{1}{3}$ |
| C班人数比例 | $\frac{1}{2}$ | $\frac{1}{2}$ |
(2)若在B班按所持态度分层抽样,抽取9人,再从这9人中任意选取3人,记认为附中“非常好”的人数为ξ,求ξ的分布列和数学期望.
3.设a,b,c为互不相等的正数,则下列不等式不一定成立的是( )
| A. | |a-b|≤|a|+|b| | B. | |a-b|≤|a-c|+|b-c| | C. | $\frac{b}{a}$<$\frac{b+c}{a+c}$ | D. | a2+$\frac{1}{{a}^{2}}$≥a+$\frac{1}{a}$ |
13.函数f(x)=$\sqrt{3}$sinx-acosx 的图象的一条对称轴是x=$\frac{5π}{3}$,则g(x)=asinx+cosx=Asin(ωx+φ)(A>0,ω>0)的一个初相是( )
| A. | -$\frac{3π}{4}$ | B. | -$\frac{π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$ |