题目内容
已知以a1为首项的数列{an}满足:an+1=(1)当a1=1,c=1,d=3时,求数列{an}的通项公式;
(2)当0<a1<1,c=1,d=3时,试用a1表示数列{an}前100项的和S100;
(3)当0<a1<
(m是正整数),c=
,正整数d≥3m时,求证:数列a2-
,a3m+2-
,a6m+2-
,a9m+2-
成等比数列当且仅当d=3m.
解:(1)由题意得an=
(k∈Z+).
(2)当0<a1<1时,
a2=a1+1,a3=a1+2,a4=a1+3,a5=
+1,a6=
+2,a7=
+3,…,a3k-1=
+1,a3k=
+2,a3k+1=
+3,
∴S100=a1+(a2+a3+a4)+(a5+a6+a7)+…+(a98+a99+a100)
=a1+(3a1+6)+(a1+6)+(
+6)+…+(
+6)
=a1+a1(3+1+
+…+
)+6×33
=
(11-
)a1+198.
(3)当d=3m时,a2=a1+
,
∵a3m=a1+
=a1-
+3<3<a1+3=a3m+1,
∴a3m+2=
+
.
∵a6m=
-
+3<3<
+3=a6m+1,
∴a6m+2=
+
.
∵a9m=
-
+3<3<
+3=a9m+1,
∴a9m+2=
+
.
∴a2-
=a1,a3m+2-
=
,a6m+2-
=
.
∴a9m+2-
=
.
综上所述,当d=3m时,数列a2-
,a3m+2-
,a6m+2
,a9m+2-
是公比为
的等比数列.
当d≥3m+1时,a3m+2=
∈(0,
),
a6m+2=
+3∈(3,3+
),a6m+3=
∈(0,
),
a9m+2=
+
∈(3-
,3),
由于a3m+2-
<0,a6m+2-
>0,a9m+2-
>0.
故数列a2-
,a3m+2-
,a6m+2-
,a9m+2-
不是等比数列.
所以,数列a2-
,a3m+2-
,a6m+2-
,a9m+2-
成等比数列,
当且仅当d=3m.
练习册系列答案
相关题目