题目内容
1.古代数学著作《九章算术》中有如下问题:“今有竹九节,下三节容四升,上四节容三升.问中间二节欲均容各多少?”意思是:“今有9节长的竹子,下部分的3节容量和为4升,上部分的4节容量和为3升.且每一节容量变化均匀(即每节容量成等差数列),问各节的容量是多少?”则根据上述条件,该竹子的总容量为( )| A. | $\frac{201}{22}$ | B. | $\frac{201}{11}$ | C. | $\frac{63}{8}$ | D. | $\frac{21}{2}$ |
分析 根据题意题意设九节竹至下而上各节的容量分别为a1,a2,…,an,公差为d,利用等差数列的前n项和公式和通项公式列出方程组$\left\{\begin{array}{l}{{a}_{1}+{a}_{2}+{a}_{3}=4}\\{{{a}_{6}+a}_{7}+{a}_{8}+{a}_{9}=3}\end{array}\right.$,解可得首项和公差,计算可得a9的值,由等差数列的前n项和公式计算可得答案.
解答 解:根据题意,九节竹的每一节容量变化均匀,即其每一节的容量成等差数列,
设至下而上各节的容量分别为a1,a2,…,an,公差为d,
分析可得:$\left\{\begin{array}{l}{{a}_{1}+{a}_{2}+{a}_{3}=4}\\{{{a}_{6}+a}_{7}+{a}_{8}+{a}_{9}=3}\end{array}\right.$,
解可得a1=$\frac{95}{66}$,d=-$\frac{7}{66}$,
则a9=$\frac{95}{66}$+8d=$\frac{13}{22}$,
则该竹子的总容量S9=$\frac{({a}_{1}+{a}_{9})×9}{2}$=$\frac{201}{22}$,
故选:A.
点评 本题考查等差数列的前n项和的计算,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
11.已知圆 C:(x-a)2+(y-2)2=4(a>0),若倾斜角为45°的直线l过抛物线y2=-12x 的焦点,且直线l被圆C截得的弦长为2$\sqrt{3}$,则a等于( )
| A. | $\sqrt{2}$+1 | B. | $\sqrt{2}$ | C. | 2±$\sqrt{2}$ | D. | $\sqrt{2}$-1 |
16.已知函数$f(x)=\left\{{\begin{array}{l}{{e^x},x≥-1}\\{ln(-x),x<-1}\end{array}}\right.$,则“x=0”是“f(x)=1”的( )
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
6.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.$,函数f(x)=logc(x+2)-1(c>0,c≠1)的图象恒过定点A(a,b),则$z=\frac{y-b}{x-a}$的取值范围是( )
| A. | $[\frac{1}{3},2]$ | B. | $[\frac{2}{5},1]$ | C. | $[\frac{1}{2},\frac{3}{2}]$ | D. | $[\frac{3}{2},\frac{5}{2}]$ |
11.设 (1+i)( x-yi)=2,其中 x,y 是实数,i 为虚数单位,则 x+y=( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |