题目内容
已知△ABC,如acosA=bcosB果,则该三角形是
- A.等腰三角形
- B.直角三角形
- C.等腰或直角三角形
- D.以上答案均不正确
C
分析:根据正弦定理把等式acosA=bcosB的边换成角的正弦,再利用倍角公式化简整理得sin2A=sin2B,进而推断A=B,或A+B=90°可得结论.
解答:根据正弦定理,∵acosA=bcosB,
∴sinAcosA=sinBcosB,
∴sin2A=sin2B,
∴A=B,或2A+2B=180°即A+B=90°,
所以△ABC为等腰或直角三角形.
故选C.
点评:此题考查了三角形形状的判断,其中涉及正弦定理,等腰、直角三角形的判定,以及二倍角的正弦函数公式,熟练掌握正弦、余弦定理是解本题的关键.注意三角方程的解法.
分析:根据正弦定理把等式acosA=bcosB的边换成角的正弦,再利用倍角公式化简整理得sin2A=sin2B,进而推断A=B,或A+B=90°可得结论.
解答:根据正弦定理,∵acosA=bcosB,
∴sinAcosA=sinBcosB,
∴sin2A=sin2B,
∴A=B,或2A+2B=180°即A+B=90°,
所以△ABC为等腰或直角三角形.
故选C.
点评:此题考查了三角形形状的判断,其中涉及正弦定理,等腰、直角三角形的判定,以及二倍角的正弦函数公式,熟练掌握正弦、余弦定理是解本题的关键.注意三角方程的解法.
练习册系列答案
相关题目