题目内容

数列{an}中a1=2,an+1=
1
2
(an+
1
an
)
,{bn}中bn • log9
an+1
an-1
=1,n∈N*

(1)求证:数列{bn}为等比数列,并求出其通项公式;
(2)当n≥3(n∈N*)时,证明:
1
4
b1
+(-1)
+
2
4
b2
+(-1)2
+
3
4
b3
+(-1)3
+…+
n
4
bn
+(-1)n
<3
分析:(1)根据{bn}中bn • log9
an+1
an-1
=1,n∈N*
an+1=
1
2
(an+
1
an
)
,可得bn+1=
1
2
bn
,从而可证数列{bn}为等比数列,并求出其通项公式;
(2)先将通项化简可得
4
bn
=
1
(
1
2
)
n
=2n
,从而有Cn=
n
4
bn
+(-1)n
=
n
2n+(-1)n
,先证:
n
2n+(-1)n
n+1
2n
 (n≥3)

,从而有
1
4
b1
+(-1)
+
2
4
b2
+(-1)2
+
3
4
b3
+(-1)3
+…+
n
4
bn
+(-1)n
2
21
+
3
22
+
4
23
+…+
n+1
2n

T=
2
21
+
3
22
+
4
23
+…+
n+1
2n
1
2
T=
2
22
+
3
23
+…+
n
2n
+
n+1
2n+1
②,利用错位相减法即可求解.
解答:证明:(1)由bn+1 • log9
an+1+1
an+1-1
=1⇒bn+1 • log9
1
2
(an+
1
an
)+1
1
2
(an+
1
an
)-1
=1⇒bn+1 • log9(
an+1
an-1
)2=1
⇒2bn+1 • log9
an+1
an-1
=1
bn • log9
an+1
an-1
=1

bn+1=
1
2
bn

又n=1时,b1 • log9
a1+1
a1-1
=1⇒b1=2

∴{bn}为等比数列,b1=2,q=
1
2
,∴bn=2 • (
1
2
)n-1=(
1
2
)n-2

(2)∵bn=(
1
2
)n-2=4 • (
1
2
)n
4
bn
=
1
(
1
2
)
n
=2n

Cn=
n
4
bn
+(-1)n
=
n
2n+(-1)n

先证:
n
2n+(-1)n
n+1
2n
 (n≥3)

当n为偶数时,显然成立;
当n为奇数时,即证
n
2n-1
n+1
2n
?n • 2n<n • 2n-n+2n-1?2n>n+1

而当n≥3时,2n>n+1也成立,故
n
2n+(-1)n
n+1
2n
  (n≥3)

1
4
b1
+(-1)
+
2
4
b2
+(-1)2
+
3
4
b3
+(-1)3
+…+
n
4
bn
+(-1)n
2
21
+
3
22
+
4
23
+…+
n+1
2n

T=
2
21
+
3
22
+
4
23
+…+
n+1
2n
1
2
T=
2
22
+
3
23
+…+
n
2n
+
n+1
2n+1

①-②:
1
2
T=1+
1
22
+
1
23
+…+
1
2n
-
n+1
2n+1
⇒T=2+
1
2
+
1
22
+…+
1
2n-1
-
n+1
2n
=2+
1
2
[1-(
1
2
)
n-1
]
1-
1
2
-
n+1
2n
=3-(
1
2
)n-1-
n+1
2n
<3

1
4
b1
+(-1)
+
2
4
b2
+(-1)2
+
3
4
b3
+(-1)3
+…+
n
4
bn
+(-1)n
<3
点评:本题以数列为载体,考查等比数列,考查数列与不等式,考查错位相减法,综合性强,难度大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网