题目内容
数列{an}中a1=2,an+1=
(an+
),{bn}中bn • log9
=1,n∈N*.
(1)求证:数列{bn}为等比数列,并求出其通项公式;
(2)当n≥3(n∈N*)时,证明:
+
+
+…+
<3.
| 1 |
| 2 |
| 1 |
| an |
| an+1 |
| an-1 |
(1)求证:数列{bn}为等比数列,并求出其通项公式;
(2)当n≥3(n∈N*)时,证明:
| 1 | ||
|
| 2 | ||
|
| 3 | ||
|
| n | ||
|
分析:(1)根据{bn}中bn • log9
=1,n∈N*,an+1=
(an+
),可得bn+1=
bn,从而可证数列{bn}为等比数列,并求出其通项公式;
(2)先将通项化简可得
=
=2n,从而有Cn=
=
,先证:
<
(n≥3)
,从而有
+
+
+…+
<
+
+
+…+
令T=
+
+
+…+
①
T=
+
+…+
+
②,利用错位相减法即可求解.
| an+1 |
| an-1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
(2)先将通项化简可得
| 4 |
| bn |
| 1 | ||
(
|
| n | ||
|
| n |
| 2n+(-1)n |
| n |
| 2n+(-1)n |
| n+1 |
| 2n |
,从而有
| 1 | ||
|
| 2 | ||
|
| 3 | ||
|
| n | ||
|
| 2 |
| 21 |
| 3 |
| 22 |
| 4 |
| 23 |
| n+1 |
| 2n |
令T=
| 2 |
| 21 |
| 3 |
| 22 |
| 4 |
| 23 |
| n+1 |
| 2n |
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
| n+1 |
| 2n+1 |
解答:证明:(1)由bn+1 • log9
=1⇒bn+1 • log9
=1⇒bn+1 • log9(
)2=1⇒2bn+1 • log9
=1又bn • log9
=1
∴bn+1=
bn
又n=1时,b1 • log9
=1⇒b1=2
∴{bn}为等比数列,b1=2,q=
,∴bn=2 • (
)n-1=(
)n-2
(2)∵bn=(
)n-2=4 • (
)n⇒
=
=2n
∴Cn=
=
先证:
<
(n≥3)
当n为偶数时,显然成立;
当n为奇数时,即证
<
?n • 2n<n • 2n-n+2n-1?2n>n+1
而当n≥3时,2n>n+1也成立,故
<
(n≥3)
∴
+
+
+…+
<
+
+
+…+
令T=
+
+
+…+
①
T=
+
+…+
+
②
①-②:
T=1+
+
+…+
-
⇒T=2+
+
+…+
-
=2+
-
=3-(
)n-1-
<3
∴
+
+
+…+
<3
| an+1+1 |
| an+1-1 |
| ||||
|
| an+1 |
| an-1 |
| an+1 |
| an-1 |
| an+1 |
| an-1 |
∴bn+1=
| 1 |
| 2 |
又n=1时,b1 • log9
| a1+1 |
| a1-1 |
∴{bn}为等比数列,b1=2,q=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)∵bn=(
| 1 |
| 2 |
| 1 |
| 2 |
| 4 |
| bn |
| 1 | ||
(
|
∴Cn=
| n | ||
|
| n |
| 2n+(-1)n |
先证:
| n |
| 2n+(-1)n |
| n+1 |
| 2n |
当n为偶数时,显然成立;
当n为奇数时,即证
| n |
| 2n-1 |
| n+1 |
| 2n |
而当n≥3时,2n>n+1也成立,故
| n |
| 2n+(-1)n |
| n+1 |
| 2n |
∴
| 1 | ||
|
| 2 | ||
|
| 3 | ||
|
| n | ||
|
| 2 |
| 21 |
| 3 |
| 22 |
| 4 |
| 23 |
| n+1 |
| 2n |
令T=
| 2 |
| 21 |
| 3 |
| 22 |
| 4 |
| 23 |
| n+1 |
| 2n |
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
| n+1 |
| 2n+1 |
①-②:
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n+1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n+1 |
| 2n |
| ||||
1-
|
| n+1 |
| 2n |
| 1 |
| 2 |
| n+1 |
| 2n |
∴
| 1 | ||
|
| 2 | ||
|
| 3 | ||
|
| n | ||
|
点评:本题以数列为载体,考查等比数列,考查数列与不等式,考查错位相减法,综合性强,难度大.
练习册系列答案
相关题目