题目内容
18.试用反证法证明:一个平面α与不在这个平面内的一条直线α最多只有一个公共点.分析 先设原结论不成立,然后推出直线在此平面内,从而得出原结论正确.
解答 证明:设该直线与平面有2个及2个以上交点,由2点确定一条直线可知,该直线在此平面内,
则与原命题矛盾,
故:一个平面和不在这个平面内的一条直线最多只有一个公共点,
点评 解此题关键要懂得反证法的意义及步骤.反证法的步骤是:
(1)假设结论不成立;
(2)从假设出发推出矛盾;
(3)假设不成立,则结论成立.
在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
练习册系列答案
相关题目
6.已知|cosα|=cosα,|tanα|=-tanα,则α的取值范围是( )
| A. | (2kπ-$\frac{π}{2}$,2kπ](k∈Z) | B. | (2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$](k∈Z) | ||
| C. | (kπ-$\frac{π}{2}$,kπ](k∈Z) | D. | (2kπ+$\frac{π}{2}$,2kπ+π](k∈Z) |
13.sin2(π+α)-cos(π-α)•cosα+1=( )
| A. | 2 | B. | 1 | C. | 2sin2α | D. | 0 |
1.设a,b∈R,定义:M(a,b)=$\frac{a+b+|a-b|}{2}$,m(a,b)=$\frac{a+b-|a-b|}{2}$.下列式子错误的是( )
| A. | M(a,b)+m(a,b)=a+b | B. | m(|a+b|,|a-b|)=|a|-|b| | C. | M(|a+b|,|a-b|)=|a|+|b| | D. | m(M(a,b),m(a,b))=m(a,b) |