题目内容
已知顶点在原点、焦点F在y轴正半轴上的抛物线Q1过点(1,2),抛物线Q2与Q1关于x轴对称,
(Ⅰ)求抛物线Q2的方程;
(Ⅱ)过点F的直线交抛物线Q1于点A(x1,y1),B(x2,y2)(x1<x2),过A,B分别作Q1的切线l1,
l2,记直线l1与Q2的交点为M(m1,n1),N(m2,n2)(m1<m2),求证:抛物线Q2上的点S(s,t)若满足条件m2s=4,则S恰在直线l2上。
(Ⅰ)求抛物线Q2的方程;
(Ⅱ)过点F的直线交抛物线Q1于点A(x1,y1),B(x2,y2)(x1<x2),过A,B分别作Q1的切线l1,
l2,记直线l1与Q2的交点为M(m1,n1),N(m2,n2)(m1<m2),求证:抛物线Q2上的点S(s,t)若满足条件m2s=4,则S恰在直线l2上。
解:(Ⅰ)设抛物线Q1的方程为x2=2py(p>0),
由过点(1,2)得4=2p,解得p=2,
∴Q1:x2=4y,
抛物线Q2与Q1关于x轴对称,故抛物线Q2的方程为x2=-4y;
(Ⅱ)由题意知AB的斜率必存在且过焦点,
设AB:y=kx+1,联立
消y得x2-4kx-4=0,
根据韦达定理有:x1+x2=4k,x1x2=-4,
∵抛物线Q1的方程为
,
∴
,
∴
,
,
∴
,同理可得l2:
,
∵N(m2,n2)在直线l1上,且
,
∴
,
,
∴
代入上式得
,
两边同乘以
,得
,
而
,故有
,
即S(s,t)满足l2的方程,
故点S恰在直线l2上。
由过点(1,2)得4=2p,解得p=2,
∴Q1:x2=4y,
抛物线Q2与Q1关于x轴对称,故抛物线Q2的方程为x2=-4y;
(Ⅱ)由题意知AB的斜率必存在且过焦点,
设AB:y=kx+1,联立
根据韦达定理有:x1+x2=4k,x1x2=-4,
∵抛物线Q1的方程为
∴
∴
∴
∵N(m2,n2)在直线l1上,且
∴
∴
代入上式得
两边同乘以
而
即S(s,t)满足l2的方程,
故点S恰在直线l2上。
练习册系列答案
相关题目