题目内容
5.如图,已知矩形ABCD中,AB=4,AD=3,P是边BD上任一点(包括点B、D),则|$\overrightarrow{AB}$+$\overrightarrow{AP}$|的最小值为( )| A. | 3 | B. | 4 | C. | 5 | D. | 2$\sqrt{3}$ |
分析 根据题意,将|$\overrightarrow{AB}$+$\overrightarrow{AP}$|写成$\sqrt{(x-\frac{32}{5})^{2}+64-(\frac{32}{5})^{2}}$,其中x=$|\begin{array}{l}{\overrightarrow{BP}}\end{array}|$且x∈[0,5],再由二次函数的性质即可得结论.
解答 解:根据题意,可得|$\overrightarrow{AB}$+$\overrightarrow{AP}$|=$\sqrt{{|\begin{array}{l}{\overrightarrow{AB}+\overrightarrow{AB}+\overrightarrow{BP}}\end{array}|}^{2}}$
=$\sqrt{(2\overrightarrow{AB}+\overrightarrow{BP})^{2}}$
=$\sqrt{4{\overrightarrow{AB}}^{2}+4\overrightarrow{AB}•\overrightarrow{BP}+{\overrightarrow{BP}}^{2}}$
又矩形ABCD中,AB=4,AD=3,
设$|\begin{array}{l}{\overrightarrow{BP}}\end{array}|$=x,则x∈[0,5],
从而上式为$\sqrt{{x}^{2}-\frac{64}{5}x+64}$
=$\sqrt{(x-\frac{32}{5})^{2}+64-(\frac{32}{5})^{2}}$,
显然当x=5时,|$\overrightarrow{AB}$+$\overrightarrow{AP}$|取最小值为$\sqrt{(5-\frac{32}{5})^{2}+64-(\frac{32}{5})^{2}}$=5,
故选:C.
点评 本题考查平面向量模的最小值,将问题转化为二次函数问题是关键,属中档题.
| A. | $\frac{3}{7}$ | B. | $\frac{4}{9}$ | C. | $\frac{5}{11}$ | D. | $\frac{6}{13}$ |
| A. | a>b>c | B. | a>c>b | C. | b>c>a | D. | b>a>c |
| A. | $\frac{1}{3}$ | B. | 1 | C. | $\frac{4}{3}$ | D. | 2 |