题目内容
在数列{an}中,a1=1,an+1=
(c为常数,n∈N*)且a1,a2,a5成公比不为1的等比数列.
(1)求证:数列{
}是等差数列
(2)求c的值
(3)设bn=an•an+1,数列{bn}的前n项和为Sn,证明:Sn<
.
| an |
| c-an+1 |
(1)求证:数列{
| 1 |
| an |
(2)求c的值
(3)设bn=an•an+1,数列{bn}的前n项和为Sn,证明:Sn<
| 1 |
| 2 |
(1)证明:∵an+1=
∴
=
=
+c
∴数列{
}是等差数列;
(2)由(1)知数列{
}是以1为首项,c为公差的等差数列,
∴
=1+(n-1)c=cn+1-c,
∴an=
∴a2=
,a5=
,
因为a1,a2,a5成等比数列,
所以(
)2=
×1,
解得c=0或c=2.
当c=0时,a1=a2=a5,不符合题意舍去,
故c=2;
(3)证明:由(2)知an=
,bn=an•an+1=
•
=
(
-
)
∴Sn=
(1-
+
-
+…+
-
)=
(1-
)<
故Sn<
.
| an |
| c•an+1 |
∴
| 1 |
| an+1 |
| c•an+1 |
| an |
| 1 |
| an |
∴数列{
| 1 |
| an |
(2)由(1)知数列{
| 1 |
| an |
∴
| 1 |
| an |
∴an=
| 1 |
| cn+1-c |
∴a2=
| 1 |
| c+1 |
| 1 |
| 4c+1 |
因为a1,a2,a5成等比数列,
所以(
| 1 |
| c+1 |
| 1 |
| 4c+1 |
解得c=0或c=2.
当c=0时,a1=a2=a5,不符合题意舍去,
故c=2;
(3)证明:由(2)知an=
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
故Sn<
| 1 |
| 2 |
练习册系列答案
相关题目