题目内容
【题目】在平面直角坐标系
中,
的参数方程为
(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为
.
(1)求
的普通方程和曲线C的直角坐标方程;
(2)求曲线C上的点到
距离的最大值及该点坐标.
【答案】(1)
的普通方程为
;曲线C的直角坐标方程为
(2)曲线C上的点到直线
距离的最大值为
,该点坐标为![]()
【解析】
(1)先将直线
的参数方程利用部分分式法进行转化,再消参数,即可得解,要注意去除杂点;将曲线C的方程先去分母,再将
,
代入,化简即可求解;(2)先将曲线C的方程化为参数形式,再利用点到直线的距离公式,结合三角函数求最值,即可得解.
解:(1)由
(t为参数),得
.
消去参数t,得
的普通方程为
;
将
去分母得
,
将
代入,
得
,
所以曲线C的直角坐标方程为
.
(2)由(1)可设曲线C的参数方程为
(
为参数),
则曲线C上的点到
的距离
,
当
,即
时,
,
此时,
,
所以曲线C上的点到直线
距离的最大值为
,该点坐标为
.
【题目】某企业生产一种产品,从流水线上随机抽取
件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在
的为劣质品,在
的为优等品,在
的为特优品,销售时劣质品每件亏损
元,优等品每件盈利
元,特优品每件盈利
元,以这
件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.
![]()
(1)求每件产品的平均销售利润;
(2)该企业主管部门为了解企业年营销费用
(单位:万元)对年销售量
(单位:万件)的影响,对该企业近
年的年营销费用
和年销售量
,
数据做了初步处理,得到的散点图(如图2)及一些统计量的值.
|
|
|
|
|
|
|
|
表中
,
,
,
.
根据散点图判断,
可以作为年销售量
(万件)关于年营销费用
(万元)的回归方程.
①求
关于
的回归方程;
②用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益
销售利润
营销费用,取
)
附:对于一组数据
,
,
,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.