题目内容
(2012•盐城二模)在数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为qk.
(1)若qk=2(k∈N*),求a1+a3+a5+…+a2k-1;
(2)若对任意的k∈N*,a2k,a2k+1,a2k+2成等差数列,其公差为dk,设bk=
.
①求证:{bk}成等差数列,并指出其公差;
②若d1=2,试求数列{dk}的前k项的和Dk.
(1)若qk=2(k∈N*),求a1+a3+a5+…+a2k-1;
(2)若对任意的k∈N*,a2k,a2k+1,a2k+2成等差数列,其公差为dk,设bk=
| 1 | qk-1 |
①求证:{bk}成等差数列,并指出其公差;
②若d1=2,试求数列{dk}的前k项的和Dk.
分析:(1)由题设知
=4,由此能求出a1+a3+a5+…+a2k-1的值.
(2)①由a2k,a2k+1,a2k+2成等差数列,其公差为dk,知2a2k+1=a2k+a2k+2,再由a2k=
,能够证明{bk}是等差数列,且公差为1.
②由d1=2,得a3=a2+2,解得a2=2,或a2=-1.由此进行分类讨论,能够求出Dk.
| a2k+1 |
| a2k-1 |
(2)①由a2k,a2k+1,a2k+2成等差数列,其公差为dk,知2a2k+1=a2k+a2k+2,再由a2k=
| a2k+1 |
| qk |
②由d1=2,得a3=a2+2,解得a2=2,或a2=-1.由此进行分类讨论,能够求出Dk.
解答:解:(1)∵数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,公比qk=2(k∈N*),
∴
=4,
∴a1+a3+a5+…+a2k-1=
=
(4k-1).
(2)①∵a2k,a2k+1,a2k+2成等差数列,其公差为dk,
∴2a2k+1=a2k+a2k+2,
而a2k=
,a2k+2=a2k+1•qk+1,
∴
+qk+1=2,则qk+1-1=
,
得
=
,
∴
-
=1,即bk+1-bk=1,
∴{bk}是等差数列,且公差为1.
②∵d1=2,∴a3=a2+2,
则有a22=1×a3=a2+2,
解得a2=2,或a2=-1.
(i)当a2=2时,q1=2,∴b1=1,
则bk=1+(k-1)×1=k,
即
=k,得qk=
,
∴
=
,
则a2k+1=
×
×…×
×a1
=
×
×…×
×1
=(k+1)2,
∴a2k=
=
=k(k+1),
则dk=a2k+1-a2k=k+1,
故Dk=
.
(ii)当a2=-1时,qk=-1,
∴b1=
,则bk=-
+(k-1)×1
=k-
.
即
=k-
,得qk=
,
∴a2k+1=a2k+1=
×
×…×
×a1
=
×
×…×
×1=(k-
)2.
则a2k=
=(2k-1)(2k-3),
∴dk=a2k+1-a2k=4k-2,
从而Dk=2k2,
综上所述,Dk=
,或Dk=2k2.
∴
| a2k+1 |
| a2k-1 |
∴a1+a3+a5+…+a2k-1=
| 1-4k |
| 1-4 |
| 1 |
| 3 |
(2)①∵a2k,a2k+1,a2k+2成等差数列,其公差为dk,
∴2a2k+1=a2k+a2k+2,
而a2k=
| a2k+1 |
| qk |
∴
| 1 |
| qk |
| qk-1 |
| qk |
得
| 1 |
| qk+1-1 |
| qk |
| qk-1 |
∴
| 1 |
| qk+1-1 |
| 1 |
| qk-1 |
∴{bk}是等差数列,且公差为1.
②∵d1=2,∴a3=a2+2,
则有a22=1×a3=a2+2,
解得a2=2,或a2=-1.
(i)当a2=2时,q1=2,∴b1=1,
则bk=1+(k-1)×1=k,
即
| 1 |
| qk-1 |
| k+1 |
| k |
∴
| a2k+1 |
| a2k-1 |
| (k+1)2 |
| k2 |
则a2k+1=
| a2k+1 |
| a2k-1 |
| a2k-1 |
| a2k-3 |
| a3 |
| a1 |
=
| (k+1)2 |
| k2 |
| k2 |
| (k-1)2 |
| 22 |
| 12 |
=(k+1)2,
∴a2k=
| a2k+1 |
| qk |
| (k+1)2 | ||
|
则dk=a2k+1-a2k=k+1,
故Dk=
| k(k+3) |
| 2 |
(ii)当a2=-1时,qk=-1,
∴b1=
| 1 |
| 2 |
| 1 |
| 2 |
=k-
| 3 |
| 2 |
即
| 1 |
| qk-1 |
| 3 |
| 2 |
k-
| ||
k-
|
∴a2k+1=a2k+1=
| a2k+1 |
| a2k-1 |
| a2k-1 |
| a2k-3 |
| a3 |
| a1 |
=
(k-
| ||
(k-
|
(k-
| ||
(k-
|
(
| ||
(-
|
| 1 |
| 2 |
则a2k=
| a2k+1 |
| qk |
∴dk=a2k+1-a2k=4k-2,
从而Dk=2k2,
综上所述,Dk=
| k(k+3) |
| 2 |
点评:本题考查数列的前n项和的计算,等差数列的证明,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意计算能力的培养.
练习册系列答案
相关题目