题目内容

(2012•盐城二模)在数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为qk
(1)若qk=2(k∈N*),求a1+a3+a5+…+a2k-1
(2)若对任意的k∈N*,a2k,a2k+1,a2k+2成等差数列,其公差为dk,设bk=
1qk-1

①求证:{bk}成等差数列,并指出其公差;
②若d1=2,试求数列{dk}的前k项的和Dk
分析:(1)由题设知
a2k+1
a2k-1
=4
,由此能求出a1+a3+a5+…+a2k-1的值.
(2)①由a2k,a2k+1,a2k+2成等差数列,其公差为dk,知2a2k+1=a2k+a2k+2,再由a2k=
a2k+1
qk
,能够证明{bk}是等差数列,且公差为1.
②由d1=2,得a3=a2+2,解得a2=2,或a2=-1.由此进行分类讨论,能够求出Dk
解答:解:(1)∵数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,公比qk=2(k∈N*),
a2k+1
a2k-1
=4

∴a1+a3+a5+…+a2k-1=
1-4k
1-4
=
1
3
(4k-1)

(2)①∵a2k,a2k+1,a2k+2成等差数列,其公差为dk
∴2a2k+1=a2k+a2k+2
a2k=
a2k+1
qk
,a2k+2=a2k+1•qk+1
1
qk
+qk+1=2
,则qk+1-1=
qk-1
qk

1
qk+1-1
=
qk
qk-1

1
qk+1-1
-
1
qk-1
=1
,即bk+1-bk=1,
∴{bk}是等差数列,且公差为1.
②∵d1=2,∴a3=a2+2,
则有a22=1×a3=a2+2
解得a2=2,或a2=-1.
(i)当a2=2时,q1=2,∴b1=1,
则bk=1+(k-1)×1=k,
1
qk-1
=k
,得qk=
k+1
k

a2k+1
a2k-1
=
(k+1)2
k2

a2k+1=
a2k+1
a2k-1
×
a2k-1
a2k-3
×…×
a3
a1
×a1

=
(k+1)2
k2
×
k2
(k-1)2
×…×
22
12
×1

=(k+1)2
a2k=
a2k+1
qk
=
(k+1)2
k+1
k
=k(k+1)

则dk=a2k+1-a2k=k+1,
Dk=
k(k+3)
2

(ii)当a2=-1时,qk=-1,
b1=
1
2
,则bk=-
1
2
+(k-1)×1

=k-
3
2

1
qk-1
=k-
3
2
,得qk=
k-
1
2
k-
3
2

∴a2k+1=a2k+1=
a2k+1
a2k-1
×
a2k-1
a2k-3
×…×
a3
a1
×a1

=
(k-
1
2
)2
(k-
3
2
)2
×
(k-
3
2
)2
(k-
1
2
)2
×…×
(
1
2
)
2
(-
1
2
)2
×1=(k-
1
2
2
a2k=
a2k+1
qk
=(2k-1)(2k-3),
∴dk=a2k+1-a2k=4k-2,
从而Dk=2k2
综上所述,Dk=
k(k+3)
2
,或Dk=2k2
点评:本题考查数列的前n项和的计算,等差数列的证明,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意计算能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网