题目内容
(2012•盐城二模)已知函数f1(x)=e|x-2a+1|,f2(x)=e|x-a|+1,x∈R.
(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;
(2)若x∈[a,+∞)时,f2(x)≥f1(x),求a的取值范围;
(3)求函数g(x)=
-
在x∈[1,6]上的最小值.
(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;
(2)若x∈[a,+∞)时,f2(x)≥f1(x),求a的取值范围;
(3)求函数g(x)=
| f1(x)+f2(x) |
| 2 |
| |f1(x)-f2(x)| |
| 2 |
分析:(1)因为a=2,且x∈[2,3],所以f(x)=e|x-3|+e|x-2|+1=e3-x+ex-1,利用基本不等式,可求在x∈[2,3]上的最小值;
(2)由题意知,当x∈[a,+∞) 时,e|x-2a+1|≤e|x-a|+1,即|x-2a+1|≤|x-a|+1 恒成立即2ax≥3a2-2a 对x∈[a,+∞) 恒成立,由此可求a的取值范围;
(3)记h1(x)=|x-(2a-1)|,h2(x)=|x-a|+1,则h1(x),h2(x)的图象分别是以(2a-1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1,分类讨论,即可求得g(x)在x∈[1,6]上的最小值.
(2)由题意知,当x∈[a,+∞) 时,e|x-2a+1|≤e|x-a|+1,即|x-2a+1|≤|x-a|+1 恒成立即2ax≥3a2-2a 对x∈[a,+∞) 恒成立,由此可求a的取值范围;
(3)记h1(x)=|x-(2a-1)|,h2(x)=|x-a|+1,则h1(x),h2(x)的图象分别是以(2a-1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1,分类讨论,即可求得g(x)在x∈[1,6]上的最小值.
解答:解:(1)因为a=2,且x∈[2,3],所以f(x)=e|x-3|+e|x-2|+1=e3-x+ex-1=
+
≥2
=2e,
当且仅当x=2时取等号,所以f(x)在x∈[2,3]上的最小值为2e …4分
(2)由题意知,当x∈[a,+∞) 时,e|x-2a+1|≤e|x-a|+1,即|x-2a+1|≤|x-a|+1 恒成立…6分
所以|x-2a+1|≤x-a+1,即2ax≥3a2-2a 对x∈[a,+∞) 恒成立,
则由
,得所求a的取值范围是0≤a≤2…9分
(3)记h1(x)=|x-(2a-1)|,h2(x)=|x-a|+1,则h1(x),h2(x)的图象分别是以(2a-1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1.
①当1≤2a-1≤6,即1≤a≤
时,∴g(x)在x∈[1,6]上的最小值为f1(2a-1)=e0=1…10分
②当a<1时,可知2a-1<a,所以
(ⅰ)当h1(a)≤h2(a),得|a-(2a-1)|≤1,即-2≤a≤0时,在x∈[1,6]上,h1(x)<h2(x),即f1(x)>f2(x),所以g(x)=f2(x)的最小值为f2(1)=e2-a;
(ii)当h1(a)>h2(a),得|a-(2a-1)|>1,即a<-2或0<a<1时,在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)=f1(x)的最小值为f1(1)=e3-2a;
③当a>
时,因为2a-1>a,可知2a-1>6,且h1(6)=2a-7>a-5=h2(6),所以
(ⅰ)当
<a≤6时,g(x)的最小值为f2(a)=e
(ii)当a>6时,因为h1(a)=a-1>1=h2(a),∴在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)在x∈[1,6]上的最小值为f2(6)=ea-5…15分
综上所述,函数g(x)在x∈[1,6]上的最小值为
…16分
| e3 |
| ex |
| ex |
| e |
|
当且仅当x=2时取等号,所以f(x)在x∈[2,3]上的最小值为2e …4分
(2)由题意知,当x∈[a,+∞) 时,e|x-2a+1|≤e|x-a|+1,即|x-2a+1|≤|x-a|+1 恒成立…6分
所以|x-2a+1|≤x-a+1,即2ax≥3a2-2a 对x∈[a,+∞) 恒成立,
则由
|
(3)记h1(x)=|x-(2a-1)|,h2(x)=|x-a|+1,则h1(x),h2(x)的图象分别是以(2a-1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1.
①当1≤2a-1≤6,即1≤a≤
| 7 |
| 2 |
②当a<1时,可知2a-1<a,所以
(ⅰ)当h1(a)≤h2(a),得|a-(2a-1)|≤1,即-2≤a≤0时,在x∈[1,6]上,h1(x)<h2(x),即f1(x)>f2(x),所以g(x)=f2(x)的最小值为f2(1)=e2-a;
(ii)当h1(a)>h2(a),得|a-(2a-1)|>1,即a<-2或0<a<1时,在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)=f1(x)的最小值为f1(1)=e3-2a;
③当a>
| 7 |
| 2 |
(ⅰ)当
| 7 |
| 2 |
(ii)当a>6时,因为h1(a)=a-1>1=h2(a),∴在x∈[1,6]上,h1(x)>h2(x),即f1(x)<f2(x),所以g(x)在x∈[1,6]上的最小值为f2(6)=ea-5…15分
综上所述,函数g(x)在x∈[1,6]上的最小值为
|
点评:本题考查函数最值的运用,考查恒成立问题,考查分类讨论的数学思想,难度大,综合性强.
练习册系列答案
相关题目