题目内容
已知向量
=(
sin2x+2,cosx),
=(1,2cosx),设函数f(x)=
•
.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,若f(A)=4,b=1,△ABC的面积为
,求实数a的值.
| m |
| 3 |
| n |
| m |
| n |
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,若f(A)=4,b=1,△ABC的面积为
| ||
| 2 |
(Ⅰ)∵向量
=(
sin2x+2,cosx),
=(1,2cosx),
∴函数f(x)=
•
=
sin2x+2+2cos2x
=
sin2x+cos2x+3
=2sin(2x+
)+3.
∴T=
=π.
(Ⅱ)由f(A)=4得,2sin(2A+
)+3=4,∴sin(2A+
)=
.
又∵A为△ABC的内角,∴
<2A+
<
,∴2A+
=
,解得A=
.
∵
bcsinA=
,b=1,
∴
×1×csin
=
,解得c=2.
由余弦定理可得a2=b2+c2-2bccosA=4+1-2×2×1×
=3.
∴a=
.
| m |
| 3 |
| n |
∴函数f(x)=
| m |
| n |
| 3 |
=
| 3 |
=2sin(2x+
| π |
| 6 |
∴T=
| 2π |
| 2 |
(Ⅱ)由f(A)=4得,2sin(2A+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
又∵A为△ABC的内角,∴
| π |
| 6 |
| π |
| 6 |
| 13π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 3 |
∵
| 1 |
| 2 |
| ||
| 2 |
∴
| 1 |
| 2 |
| π |
| 3 |
| ||
| 2 |
由余弦定理可得a2=b2+c2-2bccosA=4+1-2×2×1×
| 1 |
| 2 |
∴a=
| 3 |
练习册系列答案
相关题目