题目内容

4.已知sinα=$\frac{\sqrt{5}}{5}$,cosβ=$\frac{3\sqrt{10}}{10}$,α∈($\frac{π}{2}$,π),β∈(-$\frac{π}{2}$,0)
(Ⅰ)求cosα,tanβ;
(Ⅱ)求tan(α+β)的值.

分析 (Ⅰ)由条件利用同角三角函数的基本关系,求得cosα,tanβ的值.
(Ⅱ)由条件利用两角和的正切公式,求得要求式子的值.

解答 解:(Ⅰ)∵sinα=$\frac{\sqrt{5}}{5}$,cosβ=$\frac{3\sqrt{10}}{10}$,α∈($\frac{π}{2}$,π),β∈(-$\frac{π}{2}$,0),
∴cosα=-$\sqrt{1-sin2α}$=-$\frac{2\sqrt{5}}{5}$.
sinβ=-$\sqrt{1-cos2β}$=-$\frac{\sqrt{10}}{10}$,进而tanβ=$\frac{sinβ}{cosβ}$=-$\frac{1}{3}$.
(Ⅱ)由(Ⅰ)知,tanα=$\frac{sinα}{cosα}$=-$\frac{1}{2}$,tanβ=-$\frac{1}{3}$,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{-\frac{1}{2}-\frac{1}{3}}{1-(-\frac{1}{2})•(-\frac{1}{3})}$=-1.

点评 本题主要考查同角三角函数的基本关系,两角和的正切公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网