题目内容

设x、y均为正实数,且,则xy的最小值为( )
A.4
B.
C.9
D.16
【答案】分析:本题基本不等式中的一个常见题型,需要去掉分母,再利用基本不等式转化为关于xy的不等式,解出最小值.
解答:解:由,可化为xy=8+x+y,
∵x,y均为正实数,
∴xy=8+x+y(当且仅当x=y等号成立)
即xy-2-8≥0,
可解得≥4,
即xy≥16
故xy的最小值为16.
故应选D.
点评:解决本题的关键是先变形,再利用基本不等式来构造一个新的不等式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网