题目内容
4.已知等比数列{an}中,a1+a3=$\frac{5}{2},{a_2}+{a_4}=\frac{5}{4}$,则a6=$\frac{1}{16}$.分析 根据条件列出关于a1和q的方程组,解得即可.
解答 解:∵a1+a3=$\frac{5}{2},{a_2}+{a_4}=\frac{5}{4}$,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}{q}^{2}=\frac{5}{2}}\\{{a}_{1}q+{a}_{1}{q}^{3}=\frac{5}{4}}\end{array}\right.$,
解得q=$\frac{1}{2}$,a1=2,
∴a6=2×($\frac{1}{2}$)5=$\frac{1}{16}$,
故答案为:$\frac{1}{16}$
点评 本题考查等比数列的定义,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.
练习册系列答案
相关题目
14.已知棱长为$\sqrt{6}$的正四面体ABCD(四个面都是正三角形),在侧棱AB上任取一点P(与A,B都不重合),若点P到平面BCD及平面ACD的距离分别为a,b,则$\frac{4}{a}$+$\frac{1}{b}$的最小值为( )
| A. | $\frac{7}{2}$ | B. | 4 | C. | $\frac{9}{2}$ | D. | 5 |
19.
2017年郴州市两会召开前夕,某网站推出两会热点大型调查,调查数据表明,民生问题是百姓最为关心的热点,参与调查者中关注此问题的约占80%,现从参与者中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示:
(Ⅰ)求出频率分布直方图中a的值,并求出这200人的平均年龄;
(Ⅱ)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人赠送礼品,求抽取的2人中至少有人年龄在第1组的概率;
(Ⅲ)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中不关注民生问题的人中老年人有10人,根据以上数据,完成以下列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为关注民生问题与年龄有关?
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(Ⅰ)求出频率分布直方图中a的值,并求出这200人的平均年龄;
(Ⅱ)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人赠送礼品,求抽取的2人中至少有人年龄在第1组的概率;
(Ⅲ)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中不关注民生问题的人中老年人有10人,根据以上数据,完成以下列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为关注民生问题与年龄有关?
| 关注民生 | 不关注民生 | 合计 | |
| 青少年组 | 90 | 30 | 120 |
| 中老年组 | 70 | 10 | 80 |
| 合计 | 160 | 40 | 200 |
| p(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
13.设x∈R,若“|x-a|<1(a∈R)”是“x2+x-2>0”的充分不必要条件,则a的取值范围是( )
| A. | (-∞,-3]∪[2,+∞) | B. | (-∞,-3)∪(2,+∞) | C. | (-3,2) | D. | [-3,2] |
12.一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):
按分层抽样的方法在这个月生产的A,B,C三类轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求z的值;
(Ⅱ)分别求从B,C类轿车中抽取的车辆数.
| 轿车A | 轿车B | 轿车C | |
| 舒适型 | 100 | 150 | z |
| 标准型 | 300 | 450 | 600 |
(Ⅰ)求z的值;
(Ⅱ)分别求从B,C类轿车中抽取的车辆数.