题目内容

13、已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=
2

分析:抛物线上任一点到焦点的距离与到准线的距离是相等的.已知|AF|=2,则到准线的距离也为2,根据图形AFKA1是正方形.
则易得AB⊥x轴,即可得答案.
解答:解:由抛物线的定义.抛物线上任一点到焦点的距离与到准线的距离是相等的.
已知|AF|=2,则到准线的距离也为2.根据图形AFKA1,是正方形.
可知|AF|=|AA1|=|KF|=2∴AB⊥x轴故|AF|=|BF|=2.
故填|BF|=2.
点评:活用圆锥曲线的定义是解决圆锥曲线最基本的方法.到焦点的距离,叫焦半径.到焦点的距离常转化到准线的距离求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网