题目内容
12.过抛物线y2=-4x的焦点,引倾斜角为120°的直线,交抛物线于A、B两点,则△OAB的面积为$\frac{4\sqrt{3}}{3}$.分析 设A(x1,y1),B(x2,y2),则S=$\frac{1}{2}$|OF|•|y1-y2|.直线为$\sqrt{3}$x+y+$\sqrt{3}$=0,即x=-1-$\frac{\sqrt{3}}{3}$y代入y2=-4x得:y2-$\frac{4\sqrt{3}}{3}$y-4=0,由此能求出△OAB的面积.
解答 解:设A(x1,y1),B(x2,y2),则S=$\frac{1}{2}$|OF|•|y1-y2|.
直线为$\sqrt{3}$x+y+$\sqrt{3}$=0,即x=-1-$\frac{\sqrt{3}}{3}$y代入y2=-4x得:y2-$\frac{4\sqrt{3}}{3}$y-4=0,∴y1+y2=$\frac{4\sqrt{3}}{3}$,y1y2=-4,
∴|y1-y2|=$\sqrt{\frac{48}{9}+16}$=$\frac{8\sqrt{3}}{3}$,
∴S=$\frac{1}{2}$|OF|•|y1-y2|=$\frac{1}{2}$×1×$\frac{8\sqrt{3}}{3}$=$\frac{4\sqrt{3}}{3}$.
故答案为:$\frac{4\sqrt{3}}{3}$.
点评 本题主要考查了抛物线的简单性质,直线与抛物线的位置关系.在涉及焦点弦的问题时常需要把直线与抛物线方程联立利用韦达定理设而不求,进而利用抛物线的定义求得问题的答案.
练习册系列答案
相关题目
2.在用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入了部分数据,如下表:
(Ⅰ)请将上表空格中处所缺的数据填写在答题卡的相应位置上,并直接写出函数f(x)的解析式;
(Ⅱ)将y=f(x)图象上所有点的横坐标缩短为原来的$\frac{1}{3}$,再将所得图象向左平移$\frac{π}{4}$个单位,得到y=g(x)的图象,求g(x)的单调递增区间.
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{4}$ | π | $\frac{7π}{4}$ | $\frac{5π}{2}$ | $\frac{13π}{4}$ |
| Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
(Ⅱ)将y=f(x)图象上所有点的横坐标缩短为原来的$\frac{1}{3}$,再将所得图象向左平移$\frac{π}{4}$个单位,得到y=g(x)的图象,求g(x)的单调递增区间.
7.圆台轴截面的两条对角线互相垂直,上、下地面半径之比为3:4,高为14$\sqrt{2}$,则母线长为( )
| A. | 10$\sqrt{3}$ | B. | 25 | C. | 10$\sqrt{2}$ | D. | 20 |