题目内容

已知-
π
2
<x<0
sinx+cosx=
1
5

(1)求sinx-cosx的值;
(2)求
2sinx•cosx+2sin2x
1-tanx
的值.
分析:(1)由-
π
2
<x<0
可知x是第四象限角,从而sinx<0,cosx>0,由此可知sinx-cosx<0.再利用平方关系式求解.(sinx-cosx)2=(sinx+cosx)2-4sinxcosx.
(2)由(1)求出tanx,sinx,cosx代入分式即可得到答案.
解答:解:(1)∵-
π
2
<x<0
,∴sinx<0,cosx>0,则sinx-cosx<0,
又sinx+cosx=
1
5
,平方后得到 1+sin2x=
1
25

∴sin2x=-
24
25
∴(sinx-cosx )2=1-sin2x=
49
25

又∵sinx-cosx<0,
∴sinx-cosx=-
7
5

(2)由(1)可得sinx=-
3
5
,cosx=
4
5
,tanx=-
3
4

代入分子分母中,原分式可化为:
2sinx•cosx+2sin2x
1-tanx

=
2×(-
3
5
4
5
+2×(-
3
5
)2
1+
3
4
=-
24
175
点评:本题利用公式(sinx-cosx)2=(sinx+cosx)2-4sinxcosx.求解时需要开方,一定要注意正负号的取法,注意角x的范围.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网