题目内容
在数列{an}中,a2+1是a1与a3的等差中项,设
=(1,2),
=(an,an+1),且满足
∥
.
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项的和为Sn,若数列{bn}满足bn=anlog2(sn+2),试求数列{bn}的前n项的和Tn.
| x |
| y |
| x |
| y |
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项的和为Sn,若数列{bn}满足bn=anlog2(sn+2),试求数列{bn}的前n项的和Tn.
分析:(1)通过向量平行,判断数列是等比数列,然后求数列{an}的通项公式;
(2)求出{an}的前n项的和为Sn,然后求出bn=anlog2(sn+2)的表达式,利用错位相减法求数列{bn}的前n项的和Tn.
(2)求出{an}的前n项的和为Sn,然后求出bn=anlog2(sn+2)的表达式,利用错位相减法求数列{bn}的前n项的和Tn.
解答:解:(1)因为
=(1,2),
=(an,an+1),
∥
,
所以an+1=2an,数列{an}是等比数列,公比为2,
又a2+1是a1与a3的等差中项,
2(a2+1)=a1+a3,即2(2a1+1)=5a1,
解得a1=2,
数列{an}的通项公式an=2•2n-1=2n;
(2)数列{an}的前n项的和为Sn=
=2n+1-2,
数列{bn}满足bn=anlog2(sn+2)=2nlog2(2n+1-2+2)=2n•(n+1),
Tn=2×21+3×22+4×23+…+(n+1)•2n…①,
①×2得2Tn=2×22+3×23+4×24+…+(n+1)•2n+1…②,
①-②得,-Tn=2×21+22+23+…+2n-(n+1)•2n+1
=2-(n+1)•2n+1+
=2-(n+1)•2n+1+2n+1-2
=-n•2n+1,
数列{bn}的前n项的和Tn=n•2n+1.
| x |
| y |
| x |
| y |
所以an+1=2an,数列{an}是等比数列,公比为2,
又a2+1是a1与a3的等差中项,
2(a2+1)=a1+a3,即2(2a1+1)=5a1,
解得a1=2,
数列{an}的通项公式an=2•2n-1=2n;
(2)数列{an}的前n项的和为Sn=
| 2×(1-2n) |
| 1-2 |
数列{bn}满足bn=anlog2(sn+2)=2nlog2(2n+1-2+2)=2n•(n+1),
Tn=2×21+3×22+4×23+…+(n+1)•2n…①,
①×2得2Tn=2×22+3×23+4×24+…+(n+1)•2n+1…②,
①-②得,-Tn=2×21+22+23+…+2n-(n+1)•2n+1
=2-(n+1)•2n+1+
| 2×(1-2n) |
| 1-2 |
=2-(n+1)•2n+1+2n+1-2
=-n•2n+1,
数列{bn}的前n项的和Tn=n•2n+1.
点评:本题考查数列的判断,通项公式的求法,错位相减法求和的方法,考查计算能力.
练习册系列答案
相关题目