题目内容

10.设△ABC的内角A,B,C所对边的长分别是a,b,c.且c2=2a2+b2,可导函数f(x)满足xf′(x)<2f(x),则(  )
A.sin2A•f(sinB)<sin2B•f(sinA)B.sin2A•f(sinA)>sin2B•f(sinB)
C.cos2B•f(sinA)<sin2A•f(cosB)D.cos2B•f(sinA)>sin2A•f(cosB)

分析 构造函数g(x),求出g(x)的导数,得到函数的单调性,从而判断出答案即可.

解答 解:令g(x)=$\frac{f(x)}{{x}^{2}}$(0<x<1),
则g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∵0<x<1,f′(x)<2f(x),
∴g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$<0,
∴g(x)单调递减,
∵c2=2a2+b2
∴cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=-$\frac{a}{2b}$<0,
∴C是钝角,∴A+B<$\frac{π}{2}$,
∴0<sinA<sin($\frac{π}{2}$-B)=cosB<1,
∴g(sinA)>g(cosB),
∴$\frac{f(sinA)}{{sin}^{2}A}$>$\frac{f(cosB)}{{cos}^{2}B}$,
∴cos2B•f(sinA)>sin2A•f(cosB),
故选:D.

点评 本题考查了函数的单调性问题,考查导数的应用,构造函数g(x)是解题的关键,本题是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网