题目内容
10.设△ABC的内角A,B,C所对边的长分别是a,b,c.且c2=2a2+b2,可导函数f(x)满足xf′(x)<2f(x),则( )| A. | sin2A•f(sinB)<sin2B•f(sinA) | B. | sin2A•f(sinA)>sin2B•f(sinB) | ||
| C. | cos2B•f(sinA)<sin2A•f(cosB) | D. | cos2B•f(sinA)>sin2A•f(cosB) |
分析 构造函数g(x),求出g(x)的导数,得到函数的单调性,从而判断出答案即可.
解答 解:令g(x)=$\frac{f(x)}{{x}^{2}}$(0<x<1),
则g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∵0<x<1,f′(x)<2f(x),
∴g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$<0,
∴g(x)单调递减,
∵c2=2a2+b2,
∴cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=-$\frac{a}{2b}$<0,
∴C是钝角,∴A+B<$\frac{π}{2}$,
∴0<sinA<sin($\frac{π}{2}$-B)=cosB<1,
∴g(sinA)>g(cosB),
∴$\frac{f(sinA)}{{sin}^{2}A}$>$\frac{f(cosB)}{{cos}^{2}B}$,
∴cos2B•f(sinA)>sin2A•f(cosB),
故选:D.
点评 本题考查了函数的单调性问题,考查导数的应用,构造函数g(x)是解题的关键,本题是一道中档题.
练习册系列答案
相关题目
2.在△ABC中,点D满足$\overrightarrow{AD}$=$\frac{3}{4}\overrightarrow{AB}$,P为△ABC内一点,且满足$\overrightarrow{AP}$=$\frac{3}{10}\overrightarrow{AB}$+$\frac{2}{5}\overrightarrow{AC}$,则$\frac{{S}_{△APD}}{{S}_{△ABC}}$=( )
| A. | $\frac{3}{10}$ | B. | $\frac{9}{20}$ | C. | $\frac{6}{35}$ | D. | $\frac{9}{35}$ |
20.已知二次函数f(x)=ax2+bx+c(a≠0),若关于x的不等式f(x)>0的解集为{x|x<-2或x>4},则下列结论正确的是( )
| A. | a>0,-$\frac{b}{2a}$=1 | B. | a<0,$\frac{c}{a}$=-8 | C. | a<0,-$\frac{b}{2a}$=-1 | D. | a>0,$\frac{c}{a}$=8 |