题目内容
已知cosα=
,α∈(
,2π),则cos(α-
)=
.
| 3 |
| 5 |
| 3π |
| 2 |
| π |
| 3 |
3-4
| ||
| 10 |
3-4
| ||
| 10 |
分析:由α的范围,得到sinα的值小于0,故由cosα的值,利用同角三角函数间的基本关系求出sinα的值,然后利用两角和与差的余弦函数公式及特殊角的三角函数值化简所求的式子,将sinα及cosα的值代入,即可求出值.
解答:解:∵cosα=
,α∈(
,2π),
∴sinα=-
=-
,
则cos(α-
)=cosαcos
+sinαsin
=
×
-
×
=
.
故答案为:
| 3 |
| 5 |
| 3π |
| 2 |
∴sinα=-
| 1-cos2α |
| 4 |
| 5 |
则cos(α-
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=
| 3 |
| 5 |
| 1 |
| 2 |
| 4 |
| 5 |
| ||
| 2 |
=
3-4
| ||
| 10 |
故答案为:
3-4
| ||
| 10 |
点评:此题考查了两角和与差的余弦函数公式,同角三角函数间的基本关系,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目