题目内容
圆:x2+y2-2x+4y-1=0的圆心坐标是( )
| A、(2,-4) | B、(-2,4) | C、(1,-2) | D、(-1,2) |
分析:可以将圆的一般式方程化为标准方程后得出圆心坐标,也可以直接应用一般式方程的坐标公式(-
,-
)确定圆心坐标.
| D |
| 2 |
| E |
| 2 |
解答:解:由一般式方程的坐标公式(-
,-
)得:
圆:x2+y2-2x+4y-1=0的圆心坐标是(1,-2)
故选C.
| D |
| 2 |
| E |
| 2 |
圆:x2+y2-2x+4y-1=0的圆心坐标是(1,-2)
故选C.
点评:本题主要考查了圆的一般式方程的相关知识.属于基础题.
练习册系列答案
相关题目
如果直线l将圆:x2+y2-2x-4y=0平分,且不通过第四象限,那么l的斜率的取值范围是( )
| A、[0,2] | ||
| B、[0,1] | ||
C、[0,
| ||
D、[0,
|