题目内容
11.已知数列{an}的前n项和为Sn,且满足an+2Sn•Sn-1=0(n≥2),a1=$\frac{1}{2}$.(1)求证:{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求数列{an}的前2011项的和.
分析 (1)由an+2Sn•Sn-1=0(n≥2),可得Sn-Sn-1+2Sn•Sn-1=0,化为$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,即可证明.
(2)由(1)可得:${S}_{n}=\frac{1}{2n}$.即可得出.
解答 (1)证明:∵an+2Sn•Sn-1=0(n≥2),∴Sn-Sn-1+2Sn•Sn-1=0,化为$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,
∴{$\frac{1}{{S}_{n}}$}是等差数列,首项为2,公差为2;
(2)解:由(1)可得:$\frac{1}{{S}_{n}}$=2+2(n-1)=2n,
∴${S}_{n}=\frac{1}{2n}$.
∴数列{an}的前2011项的和=$\frac{1}{2×2011}$=$\frac{1}{4022}$.
点评 本题考查了递推关系、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
19.下列六个关系式中正确的个数是( )
①{1,0,-1}={-1,0,1}
②{a,b}⊆{b,a}
③{a}=a
④∅?{0}
⑤0∈{x|x<1,x∈R}
⑥{1,3,5}?{x|x是10以内的质数}.
①{1,0,-1}={-1,0,1}
②{a,b}⊆{b,a}
③{a}=a
④∅?{0}
⑤0∈{x|x<1,x∈R}
⑥{1,3,5}?{x|x是10以内的质数}.
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
6.若p为非负实数,随机变量ξ的分布列如下表,则Eξ的最大值为$\frac{3}{2}$,D(ξ)的最小值为$\frac{1}{4}$.
| ξ | 0 | 1 | 2 |
| P | $\frac{1}{2}$-p | p | $\frac{1}{2}$ |
16.若函数f(x)=$\frac{{x}^{3}}{3}$-ax2+bx+1在区间($\frac{1}{2}$,3)上有极值点,且在点(0,1)处的切线与直线x+y-2=0垂直,则实数a的取值范围是( )
| A. | (1,$\frac{5}{4}$) | B. | (1,$\frac{5}{3}$) | C. | [1,$\frac{5}{4}$) | D. | [1,$\frac{5}{3}$) |
3.任意确定四个日期,其中至少有两个是星期天的概率为( )
| A. | $\frac{241}{2401}$ | B. | $\frac{1105}{2401}$ | C. | $\frac{1}{2}$ | D. | $\frac{4}{7}$ |