题目内容
在锐角△ABC中,a、b、c分别是角A、B、C的对边,cosA=
,sinB=
.
(Ⅰ)求cos(A+B)的值;(Ⅱ)若a=4,求△ABC的面积.
| ||
| 5 |
3
| ||
| 10 |
(Ⅰ)求cos(A+B)的值;(Ⅱ)若a=4,求△ABC的面积.
(Ⅰ)∵A,B,C为锐角,sinA=
=
=
,cosB=
=
=
;
∴cos(A+B)=cosAcosB-sinAsinB=
×
-
×
=-
(Ⅱ)由(Ⅰ)可知0<A+B<π,A+B=
,∴C=
由正弦定理
=
,可得c=
=
=
∴S△ABC=
acsinB=
×4×
×
=6
| 1-cos2A |
1-(
|
2
| ||
| 5 |
| 1-sin2B |
1-(
|
| ||
| 10 |
∴cos(A+B)=cosAcosB-sinAsinB=
| ||
| 5 |
| ||
| 10 |
2
| ||
| 5 |
3
| ||
| 10 |
| ||
| 2 |
(Ⅱ)由(Ⅰ)可知0<A+B<π,A+B=
| 3π |
| 4 |
| π |
| 4 |
由正弦定理
| a |
| sinA |
| c |
| sinC |
| asinC |
| sinA |
4×
| ||||
|
| 10 |
∴S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| 10 |
3
| ||
| 10 |
练习册系列答案
相关题目