题目内容
(1)求证:AG•EF=CE•GD;
(2)求证:
| GF |
| AG |
| EF2 |
| CE2 |
分析:(1)要证明AG•EF=CE•GD我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题.
(2)由(1)的推理过程,我们易得∠DAG=∠GDF,又由公共角∠G,故△DFG∽△AGD,易得DG2=AG•GF,结合(1)的结论,不难得到要证明的结论.
(2)由(1)的推理过程,我们易得∠DAG=∠GDF,又由公共角∠G,故△DFG∽△AGD,易得DG2=AG•GF,结合(1)的结论,不难得到要证明的结论.
解答:证明:(1)连接AB,AC,
∵AD为⊙M的直径,∴∠ABD=90°,
∴AC为⊙O的直径,∴∠CEF=∠AGD,
∵∠DFG=∠CFE,∴∠ECF=∠GDF,
∵G为弧BD中点,∴∠DAG=∠GDF,
∵∠ECB=∠BAG,∴∠DAG=∠ECF,
∴△CEF∽△AGD,
∴
=
,
∴AG•EF=CE•GD
(2)由(1)知∠DAG=∠GDF,
∠G=∠G,
∴△DFG∽△AGD,
∴DG2=AG•GF,
由(1)知
=
,
∴
=
.
∵AD为⊙M的直径,∴∠ABD=90°,
∴AC为⊙O的直径,∴∠CEF=∠AGD,
∵∠DFG=∠CFE,∴∠ECF=∠GDF,
∵G为弧BD中点,∴∠DAG=∠GDF,
∵∠ECB=∠BAG,∴∠DAG=∠ECF,
∴△CEF∽△AGD,
∴
| CE |
| EF |
| AG |
| GD |
∴AG•EF=CE•GD
(2)由(1)知∠DAG=∠GDF,
∠G=∠G,
∴△DFG∽△AGD,
∴DG2=AG•GF,
由(1)知
| EF2 |
| CE2 |
| GD2 |
| AG2 |
∴
| GF |
| AG |
| EF2 |
| CE2 |
点评:证明三角形相似有三个判定定理:(1)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似(2)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似(3)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似.我们要根据已知条件进行合理的选择,以简化证明过程.
练习册系列答案
相关题目