题目内容
(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是 ( )
| A.16 | B.8 | C.4 | D.2 |
根据tan45°=tan(21°+24°)=
=1
得到tan21°+tan24°=1-tan21°tan24°,
可得tan21°+tan24°+tan21°tan24°=1
同理得到tan22°+tan23°=1-tan22°tan23°,
tan22°+tan23°+tan22°tan23°=1;
(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)
=[(1+tan21°)(1+tan24°)][(1+tan22°)(1+tan23°)]
=(1+tan24°+tan21°+tan24°tan21°)(1+tan22°+tan23°+tan22°tan23°)
=(1+1-tan24°tan21°+tan24°tan21°)(1+1-tan22°tan23°+tan22°tan23°)
=4
故选C.
| tan21°+tan24° |
| 1-tan21°tan24° |
得到tan21°+tan24°=1-tan21°tan24°,
可得tan21°+tan24°+tan21°tan24°=1
同理得到tan22°+tan23°=1-tan22°tan23°,
tan22°+tan23°+tan22°tan23°=1;
(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)
=[(1+tan21°)(1+tan24°)][(1+tan22°)(1+tan23°)]
=(1+tan24°+tan21°+tan24°tan21°)(1+tan22°+tan23°+tan22°tan23°)
=(1+1-tan24°tan21°+tan24°tan21°)(1+1-tan22°tan23°+tan22°tan23°)
=4
故选C.
练习册系列答案
相关题目
(1+tan21°)(1+tan20°)(1+tan25°)(1+tan24°)的值是( )
| A、2 | B、4 | C、8 | D、16 |