题目内容

(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是          (  )
分析:把原式的一四项结合,二三项结合,利用tan45°=tan(21°+24°)=tan(22°+23°)以及两角和的正切函数公式,分别化简后,即可求出结果.
解答:解:根据tan45°=tan(21°+24°)=
tan21°+tan24°
1-tan21°tan24°
=1
得到tan21°+tan24°=1-tan21°tan24°,
可得tan21°+tan24°+tan21°tan24°=1
同理得到tan22°+tan23°=1-tan22°tan23°,
tan22°+tan23°+tan22°tan23°=1;
(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)
=[(1+tan21°)(1+tan24°)][(1+tan22°)(1+tan23°)]
=(1+tan24°+tan21°+tan24°tan21°)(1+tan22°+tan23°+tan22°tan23°)
=(1+1-tan24°tan21°+tan24°tan21°)(1+1-tan22°tan23°+tan22°tan23°)
=4
故选C.
点评:此题的突破点是角度的变化即利用45°=21°+24°=22°+23°化简求值,要求学生会灵活运用两角和与差的正切函数公式化简求值.注意和角是45°,75°等角的变形式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网