题目内容
7.定义在R上的偶函数f(x)的导函数为f′(x),若对任意的实数x,都有2f(x)+xf′(x)<2恒成立,则使x2f(x)-f(1)<x2-1成立的实数x的取值范围为( )| A. | {x|x≠±1} | B. | (-∞,-1)∪(1,+∞) | C. | (-1,1) | D. | (-1,0)∪(0,1) |
分析 根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出x<0的取值范围.
解答 解:当x>0时,由2f(x)+xf′(x)-2<0可知:两边同乘以x得:
2xf(x)+x2f′(x)-2x<0
设:g(x)=x2f(x)-x2
则g′(x)=2xf(x)+x2f′(x)-2x<0,恒成立:
∴g(x)在(0,+∞)单调递减,
由x2f(x)-f(1)<x2-1
∴x2f(x)-x2<f(1)-1
即g(x)<g(1)
即x>1;
当x<0时,函数是偶函数,同理得:x<-1
综上可知:实数x的取值范围为(-∞,-1)∪(1,+∞),
故选:B
点评 主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,难度中档.
练习册系列答案
相关题目
16.已知sinα•cosβ=1,那么sin(α+β)等于( )
| A. | 0 | B. | -1 | C. | ±1 | D. | 1 |
12.执行如图的程序框图(N∈N*),那么输出的p是( )

| A. | $A_{N+3}^{N+3}$ | B. | $A_{N+2}^{N+2}$ | C. | $A_{N+1}^{N+1}$ | D. | $A_N^N$ |
19.f(x)是定义在(0,+∞)上单调函数,且对?x∈(0,+∞),都有f(f(x)-lnx)=e+1,则方程f(x)-f′(x)=e的实数解所在的区间是( )
| A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,1) | C. | (1,e) | D. | (e,3) |
16.如图所示的程序框图,输出结果中s=( )

| A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |