题目内容
设函数f(x)的导数f′(x),且f(x)=f′(
)cosx+sinx,则f′(
)=( )
| π |
| 6 |
| π |
| 3 |
分析:对f(x)=f′(
)cosx+sinx两边求导,得f′(x)=-f′(
)sinx+cosx,令x=
可得f′(
),再令x=
即可求得f′(
).
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| π |
| 3 |
解答:解:由f(x)=f′(
)cosx+sinx,得f′(x)=-f′(
)sinx+cosx,
则f′(
)=-f′(
)•sin
+cos
,解得f′(
)=
,
所以f′(
)=-f′(
)sin
+cos
=-
×
+
=0,
故选B.
| π |
| 6 |
| π |
| 6 |
则f′(
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| ||
| 3 |
所以f′(
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| π |
| 3 |
| ||
| 3 |
| ||
| 2 |
| 1 |
| 2 |
故选B.
点评:本题考查导数的运算、三角函数值,考查学生对问题的分析解决能力.
练习册系列答案
相关题目