题目内容
【题目】已知各项是正数的数列
的前
项和为
.若
,且
.
(1)求数列
的通项公式;
(2)若
对任意
恒成立,求实数
的取值范围.
【答案】(1)
;(2)![]()
【解析】
(1)利用数列的通项与前n项和的关系,当
时,由
,得到
,两式相减化简得到
,再利用等差数列的定义求解.
(2)由(1)知,
,
,将
对任意
恒成立,转化为
对一切
恒成立, 记
,利用作差法研究其单调性,求其最大值即可.
(1)当
时,由
, ①
则
②
②-①得
,
又
各项是正数,得
,
当
时,由①知
,即
,
解得
或
(舍),
所以
,
即数列
为等差数列,且首项
,
所以数列
的通项公式为
.
(2)由(1)知,
,所以
,
由题意可得
对一切
恒成立,
记
,则
,
,
所以
,
,
当
时,
,当
时,
,且
,
,
,
所以当
时,
取得最大值
,
所以实数
的取值范围为
.
练习册系列答案
相关题目
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.
非一线城市 | 一线城市 | 总计 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
|
|
|
|
|
|
|
|
|
|
由
算得,
,
参照附表,得到的正确结论是
A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C. 有99%以上的把握认为“生育意愿与城市级别有关”
D. 有99%以上的把握认为“生育意愿与城市级别无关”