题目内容
已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量m=(1,1-
sinA),n=(cosA,1),且m⊥n.
(Ⅰ)求角A;
(Ⅱ)若b+c=
a,求sin(B+
)的值.
| 3 |
(Ⅰ)求角A;
(Ⅱ)若b+c=
| 3 |
| π |
| 6 |
(1)由题意知,
⊥
,∴
•
=0,即cosA+1-
sinA=0.(2分)
∴
sinA-cosA=1,即sin(A-
)=
.(5分)
∵0<A<π,∴-
<A-
<
,∴A-
=
,即A=
.(6分)
(2)∵b+c=
a,由正弦定理得,sinB+sinC=
sinA=
.(8分)
∵B+C=
,∴sinB+sin(
-B)=
.化简得
sinB+
cosB=
,
即sin(B+
)=
.(12分)
| m |
| n |
| m |
| n |
| 3 |
∴
| 3 |
| π |
| 6 |
| 1 |
| 2 |
∵0<A<π,∴-
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
(2)∵b+c=
| 3 |
| 3 |
| 3 |
| 2 |
∵B+C=
| 2π |
| 3 |
| 2π |
| 3 |
| 3 |
| 2 |
| 3 |
| 2 |
| ||
| 2 |
| 3 |
| 2 |
即sin(B+
| π |
| 6 |
| ||
| 2 |
练习册系列答案
相关题目