题目内容
已知直线与圆交于、两点,且向量、满足,其中为坐标原点,则实数的值为 ▲ .
已知圆的方程为,过点作直线与圆交于、两点。
(1)若坐标原点O到直线AB的距离为,求直线AB的方程;
(2)当△的面积最大时,求直线AB的斜率;
(3)如图所示过点作两条直线与圆O分别交于R、S,若,且两角均为正角,试问直线RS的斜率是否为定值,并说明理由。
(本小题满分12分)已知椭圆上的任意一点到它的两个焦点, 的距离之和为,且其焦距为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同的两点A,B.问是否存在以A,B为直径
的圆 过椭圆的右焦点.若存在,求出的值;不存在,说明理由.
(12分)如图,已知椭圆(a>b>0)的离心率,过点 和的直线与原点的距离为.
(1)求椭圆的方程;
(2)已知定点,若直线与椭圆交于、两 点.问:是否存在的值,
使以为直径的圆过点?请说明理由.
已知椭圆上的任意一点到它两个焦点的距离之和为,且它的焦距为2.
(Ⅱ)已知直线与椭圆交于不同两点,且线段的中点不在圆内,求实数的取值范围.