题目内容
计算:(1)(lg2)2+lg2•lg50+lg25=(2)log
| 2 |
| 1 |
| 4 |
| 1 |
| 16 |
(3)
6
|
| 3 | 3
| ||
| 4 | 0.0625 |
| 5 | π |
(4)125+(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 27 |
| 1 |
| 3 |
(5)21+
| 1 |
| 2 |
分析:(1)由lg50=2-lg2,原式可转化为2(lg2+lg5),由此能求出其结果.
(2)log
2=2,log927=
,
log4
=-
,由此能导出原式的值.
(3)
=
,
=
,
=
,(
)0=1,2-1=
,由此能求出原式的值.
(4)(
)-2=4,343
=7,(
)-
=3,由此能求出原式的值.
(5)21+
log25=2×2log2
,由此能求出原式的值.
(2)log
| 2 |
| 3 |
| 2 |
| 1 |
| 4 |
| 1 |
| 16 |
| 1 |
| 2 |
(3)
6
|
| 5 |
| 2 |
| 3 | 3
| ||
| 3 |
| 2 |
| 4 | 0.0625 |
| 1 |
| 2 |
| 5 | π |
| 1 |
| 2 |
(4)(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 27 |
| 1 |
| 3 |
(5)21+
| 1 |
| 2 |
| 5 |
解答:解::(1)(lg2)2+lg2•lg50+lg25
=(lg2)2+lg2•(2-lg2)+2lg5
=2(lg2+lg5)=2.
(2)log
2+log927+
log4
=2+
-
=3.
(3)
+
+
+(
)0-2-1
=
+
+
+1-
=5.
(4)125+(
)-2+343
-(
)-
=125+4+7-3
=133.
(5)21+
log25
=2×2log2
=2
.
=(lg2)2+lg2•(2-lg2)+2lg5
=2(lg2+lg5)=2.
(2)log
| 2 |
| 1 |
| 4 |
| 1 |
| 16 |
=2+
| 3 |
| 2 |
| 1 |
| 2 |
(3)
6
|
| 3 | 3
| ||
| 4 | 0.0625 |
| 5 | π |
=
| 5 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=5.
(4)125+(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 27 |
| 1 |
| 3 |
=125+4+7-3
=133.
(5)21+
| 1 |
| 2 |
=2×2log2
| 5 |
=2
| 5 |
点评:本题考查对数的性质和运算法则,解题时要注意公式的合理运用.
练习册系列答案
相关题目