题目内容

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的半焦距为c.已知原点到直线l:bx+ay=ab的距离等于
1
4
c+1
,则c的最小值为
 
分析:先根据点到直线的距离求得知
ab
a2+b2
=
ab
c
=
c
4
+1,进而根据均值不等式的性质求得ab≤
a2+b2
2
=
c2
2
求得c的范围.
解答:解:依题意可知
ab
a2+b2
=
ab
c
=
c
4
+1
∴ab=
1
4
c2+c
∵ab≤
a2+b2
2
=
c2
2

1
4
c2+c≤
c2
2
,解得c≥4或c≤0(舍去)
故答案为4
点评:本题主要考查了直线与圆锥曲线的综合问题.解题的关键是利用点到直线的距离求得a,b和c的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网