题目内容

在数列{an}中,有a1=1,an+12=an2+n+1,an>0,则通项an=________.


分析:将已知递推式,移向得出=n+1,利用累加法先求出数列{}的通项公式,再求出an
解答:将已知递推式,移向得出
=n+1
所以当n≥2时,
=2


=n
以上各式相加得出
=1+2+…+n=
所以an=
又当n=1时,也适合上式.
故答案为:
点评:本题考查数列通项公式求解,累加的思想方法,考查变形构造、计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网