题目内容

若双曲线
x2
a
-
y2
b
=1
(a>0,b>0)和椭圆
x2
m
+
y2
n
=1
(m>n>0)有共同的焦点F1,F2.P是两条曲线的一个交点,则|PF1|2+|PF2|2=(  )
分析:先根据双曲线
x2
a
-
y2
b
=1
(a>0,b>0)和椭圆
x2
m
+
y2
n
=1
(m>n>0)有共同的焦点F1,F2,根据点P为椭圆和双曲线的一个交点结合定义求出|PF1|与|PF2|的表达式,代入即可求出|PF1|2+|PF2|2的值.
解答:解:因为双曲线
x2
a
-
y2
b
=1
(a>0,b>0)和椭圆
x2
m
+
y2
n
=1
(m>n>0)有共同的焦点F1,F2
设P在双曲线的右支上,左、右焦点F1、F2
利用椭圆以及双曲线的定义可得:|PF1|+|PF2|=2
m

|PF1|-|PF2|=2
a

由①②得:|PF1|=
m
+
a
,|PF2|=
m
-
a

∴|PF1|2+|PF2|2=2(m+a).
故选B.
点评:本题主要考查圆锥曲线的综合问题.解决本题的关键在于根据双曲线和椭圆的定义得到|PF1|与|PF2|的表达式,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网