题目内容
某高中学校有高一学生600人,高二学生500人,高三学生500人,现通过分层抽样抽取一个容量为320的样本,则高三学生应抽取的人数为
100
100
.分析:先求出高三学生所占的比列,再用样本容量乘以此比列,即得所求.
解答:解:高三学生所占的比列为
=
,样本容量为320,故高三学生应抽取的人数为320×
=100,
故答案为100.
| 500 |
| 600+500+500 |
| 5 |
| 16 |
| 5 |
| 16 |
故答案为100.
点评:本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题.
练习册系列答案
相关题目
某高中学校为了推进课程改革,满足不同层次学生的需求,决定从高一开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学和生物辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座(规定:各科达到预先设定的人数时为满座,否则成为不满座),统计数据表明,各学科讲座各天的满座概率如下表:
根据表:
(Ⅰ)求数学辅导讲座在周一、周三、周五都不满座的概率;
(Ⅱ)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.
| 生物 | 化学 | 物理 | 数学 | |
| 周一 | ||||
| 周三 | ||||
| 周五 |
(Ⅰ)求数学辅导讲座在周一、周三、周五都不满座的概率;
(Ⅱ)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.