搜索
题目内容
已知椭圆
过点
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
且斜率为
(
)的直线
与椭圆
相交于
两点,直线
、
分别交直线
于
、
两点,线段
的中点为
.记直线
的斜率为
,求证:
为定值.
试题答案
相关练习册答案
(Ⅰ)
;(Ⅱ)
试题分析:(Ⅰ)根据条件可得以下方程组:
,解这个方程组求出
、
的值便得椭圆的方程;(Ⅱ)将
用
表示出来,这样
就是一个只含
的式子,将该式化简即可.那么如何用
来表示
?
设
,
.因为A(2,0),所以直线
的方程分别为:
.
令
得:
所以
的中点为:
由此得直线
的斜率为:
①
再设直线
的方程为
,代入椭圆方程
得:
设
,
,则由韦达定理得:
代入①式,便可将
用
表示出来,从而得到
的值.
试题解析:(Ⅰ)由题设:
,解之得
,所以椭圆
的方程为
4分
(Ⅱ)设直线
的方程为
代入椭圆方程
得:
设
,
,则由韦达定理得:
直线
的方程分别为:
令,
得:
所以
13分
练习册系列答案
课课练与单元测试系列答案
世纪金榜小博士单元期末一卷通系列答案
单元测试AB卷台海出版社系列答案
黄冈新思维培优考王单元加期末卷系列答案
名校名师夺冠金卷系列答案
小学英语课时练系列答案
培优新帮手系列答案
天天向上一本好卷系列答案
小学生10分钟应用题系列答案
课堂作业广西教育出版社系列答案
相关题目
已知椭圆
的中心在坐标原点,焦点在
轴上,椭圆
上的点到焦点距离的最大值为
,最小值为
.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线
与椭圆交于不同的两点
、
,且线段
的垂直平分线过定点
,求
的取值范围.
已知圆
直线
与圆
相切,且交椭圆
于
两点,
是椭圆的半焦距,
,
(Ⅰ)求
的值;
(Ⅱ)O为坐标原点,若
求椭圆
的方程;
(Ⅲ) 在(Ⅱ)的条件下,设椭圆
的左右顶点分别为A,B,动点
,直线AS,BS与直线
分别交于M,N两点,求线段MN的长度的最小值.
设抛物线
的焦点为
,准线为
,
,以
为圆心的圆
与
相切于点
,
的纵坐标为
,
是圆
与
轴除
外的另一个交点.
(I)求抛物线
与圆
的方程;
( II)已知直线
,
与
交于
两点,
与
交于点
,且
, 求
的面积.
设双曲线
以椭圆
的两个焦点为焦点,且双曲线
的一条渐近线是
,
(1)求双曲线
的方程;
(2)若直线
与双曲线
交于不同两点
,且
都在以
为圆心的圆上,求实数
的取值范围.
经过点
且与直线
相切的动圆的圆心轨迹为
.点
在轨迹
上,且关于
轴对称,过线段
(两端点除外)上的任意一点作直线
,使直线
与轨迹
在点
处的切线平行,设直线
与轨迹
交于点
.
(1)求轨迹
的方程;
(2)证明:
;
(3)若点
到直线
的距离等于
,且
的面积为20,求直线
的方程.
已知点
,
是抛物线
上相异两点,且满足
.
(Ⅰ)若
的中垂线经过点
,求直线
的方程;
(Ⅱ)若
的中垂线交
轴于点
,求
的面积的最大值及此时直线
的方程.
设椭圆
的左右顶点分别为
,离心率
.过该椭圆上任一点
作
轴,垂足为
,点
在
的延长线上,且
.
(1)求椭圆的方程;
(2)求动点
的轨迹
的方程;
(3)设直线
(
点不同于
)与直线
交于点
,
为线段
的中点,试判断直线
与曲线
的位置关系,并证明你的结论.
设抛物线的顶点在原点,准线方程为x =﹣2,则抛物线的方程是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案