题目内容

6.某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示:
  甲 乙 原料限额
 A(吨) 3 2 12
 B(吨) 1 2 8
(1)设该企业每天生产甲、乙两种产品分别为x,y吨,试写出关于的线性约束条件并画出可行域;
(2)如果生产1吨甲、乙产品可获利润分别为3万元、4万元,试求该企业每天可获得的最大利润.

分析 (1)直接由题意得到关于x,y的线性约束条件并画出可行域;
(2)设该企业每天可获得的利润为z,则z=3x+4y,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:(1)由题意可得:$\left\{\begin{array}{l}{3x+2y≤12}\\{x+2y≤8}\\{x≥0,y≥0}\end{array}\right.$,画出可行域如图:

(2)该企业每天可获得的利润为z,则z=3x+4y,
联立$\left\{\begin{array}{l}{3x+2y=12}\\{x+2y=8}\end{array}\right.$,解得A(2,3),
化z=3x+4y为y=-$\frac{3}{4}x+\frac{z}{4}$,
由图可知,当直线y=-$\frac{3}{4}x+\frac{z}{4}$过A时,直线在y轴上的截距最大,z有最大值为3×2+4×3=18.
即该企业每天可获得的最大利润为18万元.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网