题目内容
1.曲线$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$与曲线$\frac{x^2}{{{a^2}-m}}+\frac{y^2}{{{b^2}-m}}=1$有相同的( )| A. | 长轴长 | B. | 短轴长 | C. | 焦距 | D. | 离心率 |
分析 由题意,(a2-m)-(b2-m)=a2-b2,即可得出结论.
解答 解:由题意,(a2-m)-(b2-m)=a2-b2,
∴曲线$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$与曲线$\frac{x^2}{{{a^2}-m}}+\frac{y^2}{{{b^2}-m}}=1$有相同的焦距,
故选:C.
点评 本题考查椭圆的性质,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
11.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1∥l2,l3⊥l1,l4⊥l2,则下列结论一定正确的是( )
| A. | l3⊥l4 | B. | l3∥l4 | ||
| C. | l3,l4既不平行也不垂直 | D. | l3,l4的位置关系不确定 |
12.
某算法的程序框图如图所示,其中输入的变量J在1,2,3,…,30这30个整数中等可能随机产生.
(1)分别求出(按程序框图正确编程运行时)输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录
了输出y的值为i(i=1,2,3)的频数,下面是甲、乙所作频数统计表的部分数据:
甲的频数统计表(部分)
乙的频数统计表(部分)
当n=2000时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.
(1)分别求出(按程序框图正确编程运行时)输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录
了输出y的值为i(i=1,2,3)的频数,下面是甲、乙所作频数统计表的部分数据:
甲的频数统计表(部分)
| 运行次数 | 输出y=1的频数 | 输出y=2的频数 | 输出y=3的频数 |
| 30 | 16 | 11 | 3 |
| … | … | … | … |
| 2000 | 967 | 783 | 250 |
| 运行次数 | 输出y=1的频数 | 输出y=2的频数 | 输出y=3的频数 |
| 30 | 13 | 13 | 4 |
| … | … | … | … |
| 2000 | 998 | 803 | 199 |
10.已知椭圆$\frac{x^2}{9}+\frac{y^2}{n^2}=1$与双曲线$\frac{x^2}{4}-\frac{y^2}{m^2}=1$有相同的焦点,则动点P(n,m)的轨迹是( )
| A. | 椭圆的一部分 | B. | 双曲线的一部分 | C. | 抛物线的一部分 | D. | 圆的一部分 |