题目内容
函数f(x)=(ex-a)2+(e-x-a)2(0<a<2)的最小值为( )
| A.a2-2 | B.2(a-1)2 | C.2-a2 | D.-2(a-1)2 |
由题意,y=(ex+e-x)2-2a(ex+e-x)+2a2-2.令t=ex+e-x,则f(t)=t2-2at+2a2-2.
∵t=ex+e-x≥2,
∴f(t)=(t-a)2+a2-2的定义域为[2,+∞).
∵抛物线的对称轴方程是t=a,0<a<2
∴[2,+∞)是函数的单调递增区间
∴ymin=f(2)=2(a-1)2.
故选B.
∵t=ex+e-x≥2,
∴f(t)=(t-a)2+a2-2的定义域为[2,+∞).
∵抛物线的对称轴方程是t=a,0<a<2
∴[2,+∞)是函数的单调递增区间
∴ymin=f(2)=2(a-1)2.
故选B.
练习册系列答案
相关题目