题目内容

已知0<α<
π
2
<β<π,cosα=
3
5
,sin(α+β)=-
3
5
,则cosβ的值为(  )
分析:先求出sinα=
4
5
cos(α+β)=-
4
5
,再利用cosβ=cos[(α+β)-α],即可得出结论.
解答:解:∵0<α<
π
2
<β<π,cosα=
3
5
,sin(α+β)=-
3
5

sinα=
4
5
cos(α+β)=-
4
5

∴cosβ=cos[(α+β)-α]=-
4
5
3
5
+(-
3
5
)•
4
5
=-
24
25

故选C.
点评:本题考查三角函数的求值,考查角的变换,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网